toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alicia Fornes; Sergio Escalera; Josep Llados; Ernest Valveny edit  url
doi  isbn
openurl 
  Title Symbol Classification using Dynamic Aligned Shape Descriptor Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1957–1960  
  Keywords  
  Abstract Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we propose a new descriptor and distance computation for coping with the problem of symbol recognition in the domain of Graphical Document Image Analysis. The proposed D-Shape descriptor encodes the arrangement information of object parts in a circular structure, allowing different levels of distortion. The classification is performed using a cyclic Dynamic Time Warping based method, allowing distortions and rotation. The methodology has been validated on different data sets, showing very high recognition rates.  
  Address Istanbul (Turkey)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
  Area Expedition Conference ICPR  
  Notes DAG; HUPBA; MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ FEL2010 Serial (down) 1421  
Permanent link to this record
 

 
Author Anjan Dutta; Umapada Pal; Alicia Fornes; Josep Llados edit  doi
isbn  openurl
  Title An Efficient Staff Removal Technique from Printed Musical Documents Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1965–1968  
  Keywords  
  Abstract Staff removal is an important preprocessing step of the Optical Music Recognition (OMR). The process aims to remove the stafflines from a musical document and retain only the musical symbols, later these symbols are used effectively to identify the music information. This paper proposes a simple but robust method to remove stafflines from printed musical scores. In the proposed methodology we have considered a staffline segment as a horizontal linkage of vertical black runs with uniform height. We have used the neighbouring properties of a staffline segment to validate it as a true segment. We have considered the dataset along with the deformations described in for evaluation purpose. From experimentation we have got encouraging results.  
  Address Istanbul (Turkey)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ DPF2010 Serial (down) 1420  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny edit  doi
isbn  openurl
  Title Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. Type Conference Article
  Year 2010 Publication 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition Abbreviated Journal  
  Volume 6218 Issue Pages 223–232  
  Keywords  
  Abstract Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor In E.R. Hancock, R.C. Wilson, T. Windeatt, I. Ulusoy and F. Escolano,  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-14979-5 Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ GiV2010 Serial (down) 1416  
Permanent link to this record
 

 
Author David Fernandez edit  openurl
  Title Handwritten Word Spotting in Old Manuscript Images using Shape Descriptors Type Report
  Year 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 161 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Fer2010b Serial (down) 1353  
Permanent link to this record
 

 
Author Anjan Dutta edit  openurl
  Title Symbol Spotting in Graphical Documents by Serialized Subgraph Matching Type Report
  Year 2010 Publication CVC Technical Report Abbreviated Journal  
  Volume 159 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Dut2010 Serial (down) 1351  
Permanent link to this record
 

 
Author Umapada Pal; Partha Pratim Roy; N. Tripathya; Josep Llados edit  url
doi  openurl
  Title Multi-oriented Bangla and Devnagari text recognition Type Journal Article
  Year 2010 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 43 Issue 12 Pages 4124–4136  
  Keywords  
  Abstract There are printed complex documents where text lines of a single page may have different orientations or the text lines may be curved in shape. As a result, it is difficult to detect the skew of such documents and hence character segmentation and recognition of such documents are a complex task. In this paper, using background and foreground information we propose a novel scheme towards the recognition of Indian complex documents of Bangla and Devnagari script. In Bangla and Devnagari documents usually characters in a word touch and they form cavity regions. To take care of these cavity regions, background information of such documents is used. Convex hull and water reservoir principle have been applied for this purpose. Here, at first, the characters are segmented from the documents using the background information of the text. Next, individual characters are recognized using rotation invariant features obtained from the foreground part of the characters.

For character segmentation, at first, writing mode of a touching component (word) is detected using water reservoir principle based features. Next, depending on writing mode and the reservoir base-region of the touching component, a set of candidate envelope points is then selected from the contour points of the component. Based on these candidate points, the touching component is finally segmented into individual characters. For recognition of multi-sized/multi-oriented characters the features are computed from different angular information obtained from the external and internal contour pixels of the characters. These angular information are computed in such a way that they do not depend on the size and rotation of the characters. Circular and convex hull rings have been used to divide a character into smaller zones to get zone-wise features for higher recognition results. We combine circular and convex hull features to improve the results and these features are fed to support vector machines (SVM) for recognition. From our experiment we obtained recognition results of 99.18% (98.86%) accuracy when tested on 7515 (7874) Devnagari (Bangla) characters.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ PRT2010 Serial (down) 1337  
Permanent link to this record
 

 
Author Joan Mas; Josep Llados; Gemma Sanchez; J.A. Jorge edit  url
doi  openurl
  Title A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams Type Journal Article
  Year 2010 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 43 Issue 12 Pages 4148–4164  
  Keywords Syntactic Pattern Recognition; Symbol recognition; Diagram understanding; Sketched diagrams; Adjacency Grammars; Incremental parsing; Spatial directed parsing  
  Abstract This paper presents a syntactic approach based on Adjacency Grammars (AG) for sketch diagram modeling and understanding. Diagrams are a combination of graphical symbols arranged according to a set of spatial rules defined by a visual language. AG describe visual shapes by productions defined in terms of terminal and non-terminal symbols (graphical primitives and subshapes), and a set functions describing the spatial arrangements between symbols. Our approach to sketch diagram understanding provides three main contributions. First, since AG are linear grammars, there is a need to define shapes and relations inherently bidimensional using a sequential formalism. Second, our parsing approach uses an indexing structure based on a spatial tessellation. This serves to reduce the search space when finding candidates to produce a valid reduction. This allows order-free parsing of 2D visual sentences while keeping combinatorial explosion in check. Third, working with sketches requires a distortion model to cope with the natural variations of hand drawn strokes. To this end we extended the basic grammar with a distortion measure modeled on the allowable variation on spatial constraints associated with grammar productions. Finally, the paper reports on an experimental framework an interactive system for sketch analysis. User tests performed on two real scenarios show that our approach is usable in interactive settings.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ MLS2010 Serial (down) 1336  
Permanent link to this record
 

 
Author Joan Mas edit  isbn
openurl 
  Title A Syntactic Pattern Recognition Approach based on a Distribution Tolerant Adjacency Grammar and a Spatial Indexed Parser. Application to Sketched Document Recognition Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sketch recognition is a discipline which has gained an increasing interest in the last
20 years. This is due to the appearance of new devices such as PDA, Tablet PC’s
or digital pen & paper protocols. From the wide range of sketched documents we
focus on those that represent structured documents such as: architectural floor-plans,
engineering drawing, UML diagrams, etc. To recognize and understand these kinds
of documents, first we have to recognize the different compounding symbols and then
we have to identify the relations between these elements. From the way that a sketch
is captured, there are two categories: on-line and off-line. On-line input modes refer
to draw directly on a PDA or a Tablet PC’s while off-line input modes refer to scan
a previously drawn sketch.
This thesis is an overlapping of three different areas on Computer Science: Pattern
Recognition, Document Analysis and Human-Computer Interaction. The aim of this
thesis is to interpret sketched documents independently on whether they are captured
on-line or off-line. For this reason, the proposed approach should contain the following
features. First, as we are working with sketches the elements present in our input
contain distortions. Second, as we would work in on-line or off-line input modes, the
order in the input of the primitives is indifferent. Finally, the proposed method should
be applied in real scenarios, its response time must be slow.
To interpret a sketched document we propose a syntactic approach. A syntactic
approach is composed of two correlated components: a grammar and a parser. The
grammar allows describing the different elements on the document as well as their
relations. The parser, given a document checks whether it belongs to the language
generated by the grammar or not. Thus, the grammar should be able to cope with
the distortions appearing on the instances of the elements. Moreover, it would be
necessary to define a symbol independently of the order of their primitives. Concerning to the parser when analyzing 2D sentences, it does not assume an order in the
primitives. Then, at each new primitive in the input, the parser searches among the
previous analyzed symbols candidates to produce a valid reduction.
Taking into account these features, we have proposed a grammar based on Adjacency Grammars. This kind of grammars defines their productions as a multiset
of symbols rather than a list. This allows describing a symbol without an order in
their components. To cope with distortion we have proposed a distortion model.
This distortion model is an attributed estimated over the constraints of the grammar and passed through the productions. This measure gives an idea on how far is the
symbol from its ideal model. In addition to the distortion on the constraints other
distortions appear when working with sketches. These distortions are: overtracing,
overlapping, gaps or spurious strokes. Some grammatical productions have been defined to cope with these errors. Concerning the recognition, we have proposed an
incremental parser with an indexation mechanism. Incremental parsers analyze the
input symbol by symbol given a response to the user when a primitive is analyzed.
This makes incremental parser suitable to work in on-line as well as off-line input
modes. The parser has been adapted with an indexation mechanism based on a spatial division. This indexation mechanism allows setting the primitives in the space
and reducing the search to a neighbourhood.
A third contribution is a grammatical inference algorithm. This method given a
set of symbols captures the production describing it. In the field of formal languages,
different approaches has been proposed but in the graphical domain not so much work
is done in this field. The proposed method is able to capture the production from
a set of symbol although they are drawn in different order. A matching step based
on the Haussdorff distance and the Hungarian method has been proposed to match
the primitives of the different symbols. In addition the proposed approach is able to
capture the variability in the parameters of the constraints.
From the experimental results, we may conclude that we have proposed a robust
approach to describe and recognize sketches. Moreover, the addition of new symbols
to the alphabet is not restricted to an expert. Finally, the proposed approach has
been used in two real scenarios obtaining a good performance.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-4-0 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Mas2010 Serial (down) 1334  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados edit  url
doi  isbn
openurl 
  Title A Symbol-dependent Writer Identifcation Approach in Old Handwritten Music Scores Type Conference Article
  Year 2010 Publication 12th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 634 - 639  
  Keywords  
  Abstract Writer identification consists in determining the writer of a piece of handwriting from a set of writers. In this paper we introduce a symbol-dependent approach for identifying the writer of old music scores, which is based on two symbol recognition methods. The main idea is to use the Blurred Shape Model descriptor and a DTW-based method for detecting, recognizing and describing the music clefs and notes. The proposed approach has been evaluated in a database of old music scores, achieving very high writer identification rates.  
  Address Kolkata (India)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4244-8353-2 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FoL2010 Serial (down) 1321  
Permanent link to this record
 

 
Author Albert Gordo; Alicia Fornes; Ernest Valveny; Josep Llados edit  doi
isbn  openurl
  Title A Bag of Notes Approach to Writer Identification in Old Handwritten Music Scores Type Conference Article
  Year 2010 Publication 9th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 247–254  
  Keywords  
  Abstract Determining the authorship of a document, namely writer identification, can be an important source of information for document categorization. Contrary to text documents, the identification of the writer of graphical documents is still a challenge. In this paper we present a robust approach for writer identification in a particular kind of graphical documents, old music scores. This approach adapts the bag of visual terms method for coping with graphic documents. The identification is performed only using the graphical music notation. For this purpose, we generate a graphic vocabulary without recognizing any music symbols, and consequently, avoiding the difficulties in the recognition of hand-drawn symbols in old and degraded documents. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving very high identification rates.  
  Address Boston; USA;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60558-773-8 Medium  
  Area Expedition Conference DAS  
  Notes DAG Approved no  
  Call Number DAG @ dag @ GFV2010 Serial (down) 1320  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: