toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title Visual Gamma Correction for LCD Displays Type Journal Article
  Year 2011 Publication Displays Abbreviated Journal DIS  
  Volume 32 Issue 1 Pages 17-23  
  Keywords Display calibration; Psychophysics ; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract An improved method for visual gamma correction is developed for LCD displays to increase the accuracy of digital colour reproduction. Rather than utilising a photometric measurement device, we use observ- ers’ visual luminance judgements for gamma correction. Eight half tone patterns were designed to gen- erate relative luminances from 1/9 to 8/9 for each colour channel. A psychophysical experiment was conducted on an LCD display to find the digital signals corresponding to each relative luminance by visually matching the half-tone background to a uniform colour patch. Both inter- and intra-observer vari- ability for the eight luminance matches in each channel were assessed and the luminance matches proved to be consistent across observers (DE00 < 3.5) and repeatable (DE00 < 2.2). Based on the individual observer judgements, the display opto-electronic transfer function (OETF) was estimated by using either a 3rd order polynomial regression or linear interpolation for each colour channel. The performance of the proposed method is evaluated by predicting the CIE tristimulus values of a set of coloured patches (using the observer-based OETFs) and comparing them to the expected CIE tristimulus values (using the OETF obtained from spectro-radiometric luminance measurements). The resulting colour differences range from 2 to 4.6 DE00. We conclude that this observer-based method of visual gamma correction is useful to estimate the OETF for LCD displays. Its major advantage is that no particular functional relationship between digital inputs and luminance outputs has to be assumed.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ XFK2011 Serial (down) 1815  
Permanent link to this record
 

 
Author Alicia Fornes; Anjan Dutta; Albert Gordo; Josep Llados edit  doi
isbn  openurl
  Title The ICDAR 2011 Music Scores Competition: Staff Removal and Writer Identification Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1511-1515  
  Keywords  
  Abstract In the last years, there has been a growing interest in the analysis of handwritten music scores. In this sense, our goal has been to foster the interest in the analysis of handwritten music scores by the proposal of two different competitions: Staff removal and Writer Identification. Both competitions have been tested on the CVC-MUSCIMA database: a ground-truth of handwritten music score images. This paper describes the competition details, including the dataset and ground-truth, the evaluation metrics, and a short description of the participants, their methods, and the obtained results.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FDG2011b Serial (down) 1794  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Sergi Robles; Joan Mas; Farshad Nourbakhsh; Partha Pratim Roy edit  doi
isbn  openurl
  Title ICDAR 2011 Robust Reading Competition – Challege 1: Reading Text in Born-Digital Images (Web and Email) Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1485-1490  
  Keywords  
  Abstract This paper presents the results of the first Challenge of ICDAR 2011 Robust Reading Competition. Challenge 1 is focused on the extraction of text from born-digital images, specifically from images found in Web pages and emails. The challenge was organized in terms of three tasks that look at different stages of the process: text localization, text segmentation and word recognition. In this paper we present the results of the challenge for all three tasks, and make an open call for continuous participation outside the context of ICDAR 2011.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ KRM2011 Serial (down) 1793  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit  url
doi  isbn
openurl 
  Title Wall Patch-Based Segmentation in Architectural Floorplans Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1270-1274  
  Keywords  
  Abstract Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates.  
  Address Beiging, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ HMS2011a Serial (down) 1792  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit  doi
isbn  openurl
  Title Symbol Spotting in Line Drawings Through Graph Paths Hashing Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 982-986  
  Keywords  
  Abstract In this paper we propose a symbol spotting technique through hashing the shape descriptors of graph paths (Hamiltonian paths). Complex graphical structures in line drawings can be efficiently represented by graphs, which ease the accurate localization of the model symbol. Graph paths are the factorized substructures of graphs which enable robust recognition even in the presence of noise and distortion. In our framework, the entire database of the graphical documents is indexed in hash tables by the locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. The spotting method is formulated by a spatial voting scheme to the list of locations of the paths that are decided during the hash table lookup process. We perform detailed experiments with various dataset of line drawings and the results demonstrate the effectiveness and efficiency of the technique.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DLP2011b Serial (down) 1791  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  doi
isbn  openurl
  Title Subgraph Spotting Through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 870-874  
  Keywords  
  Abstract We present a method for spotting a subgraph in a graph repository. Subgraph spotting is a very interesting research problem for various application domains where the use of a relational data structure is mandatory. Our proposed method accomplishes subgraph spotting through graph embedding. We achieve automatic indexation of a graph repository during off-line learning phase, where we (i) break the graphs into 2-node sub graphs (a.k.a. cliques of order 2), which are primitive building-blocks of a graph, (ii) embed the 2-node sub graphs into feature vectors by employing our recently proposed explicit graph embedding technique, (iii) cluster the feature vectors in classes by employing a classic agglomerative clustering technique, (iv) build an index for the graph repository and (v) learn a Bayesian network classifier. The subgraph spotting is achieved during the on-line querying phase, where we (i) break the query graph into 2-node sub graphs, (ii) embed them into feature vectors, (iii) employ the Bayesian network classifier for classifying the query 2-node sub graphs and (iv) retrieve the respective graphs by looking-up in the index of the graph repository. The graphs containing all query 2-node sub graphs form the set of result graphs for the query. Finally, we employ the adjacency matrix of each result graph along with a score function, for spotting the query graph in it. The proposed subgraph spotting method is equally applicable to a wide range of domains, offering ease of query by example (QBE) and granularity of focused retrieval. Experimental results are presented for graphs generated from two repositories of electronic and architectural document images.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2011 Serial (down) 1790  
Permanent link to this record
 

 
Author Volkmar Frinken; Andreas Fischer; Horst Bunke; Alicia Fornes edit  doi
openurl 
  Title Co-training for Handwritten Word Recognition Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 314-318  
  Keywords  
  Abstract To cope with the tremendous variations of writing styles encountered between different individuals, unconstrained automatic handwriting recognition systems need to be trained on large sets of labeled data. Traditionally, the training data has to be labeled manually, which is a laborious and costly process. Semi-supervised learning techniques offer methods to utilize unlabeled data, which can be obtained cheaply in large amounts in order, to reduce the need for labeled data. In this paper, we propose the use of Co-Training for improving the recognition accuracy of two weakly trained handwriting recognition systems. The first one is based on Recurrent Neural Networks while the second one is based on Hidden Markov Models. On the IAM off-line handwriting database we demonstrate a significant increase of the recognition accuracy can be achieved with Co-Training for single word recognition.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFB2011 Serial (down) 1789  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  url
doi  openurl
  Title Browsing Heterogeneous Document Collections by a Segmentation-Free Word Spotting Method Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 63-67  
  Keywords  
  Abstract In this paper, we present a segmentation-free word spotting method that is able to deal with heterogeneous document image collections. We propose a patch-based framework where patches are represented by a bag-of-visual-words model powered by SIFT descriptors. A later refinement of the feature vectors is performed by applying the latent semantic indexing technique. The proposed method performs well on both handwritten and typewritten historical document images. We have also tested our method on documents written in non-Latin scripts.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG;ADAS Approved no  
  Call Number Admin @ si @ RAT2011 Serial (down) 1788  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva edit  doi
openurl 
  Title Circular Blurred Shape Model for Multiclass Symbol Recognition Type Journal Article
  Year 2011 Publication IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) Abbreviated Journal TSMCB  
  Volume 41 Issue 2 Pages 497-506  
  Keywords  
  Abstract In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-4419 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; DAG;HuPBA Approved no  
  Call Number Admin @ si @ EFP2011 Serial (down) 1784  
Permanent link to this record
 

 
Author Marçal Rusiñol; R.Roset; Josep Llados; C.Montaner edit  openurl
  Title Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation Type Journal
  Year 2011 Publication e-Perimetron Abbreviated Journal ePER  
  Volume 6 Issue 4 Pages 219-229  
  Keywords  
  Abstract By means of computer vision algorithms scanned images of maps are processed in order to extract relevant geographic information from printed coordinate pairs. The meaningful information is then transformed into georeferencing information for each single map sheet, and the complete set is compiled to produce a graphical index sheet for the map series along with relevant metadata. The whole process is fully automated and trained to attain maximum effectivity and throughput.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RRL2011a Serial (down) 1765  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: