toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Antonio Clavelli edit  isbn
openurl 
  Title A computational model of eye guidance, searching for text in real scene images Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Searching for text objects in real scene images is an open problem and a very active computer vision research area. A large number of methods have been proposed tackling the text search as extension of the ones from the document analysis field or inspired by general purpose object detection methods. However the general problem of object search in real scene images remains an extremely challenging problem due to the huge variability in object appearance. This thesis builds on top of the most recent findings in the visual attention literature presenting a novel computational model of eye guidance aiming to better describe text object search in real scene images.
First are presented the relevant state-of-the-art results from the visual attention literature regarding eye movements and visual search. Relevant models of attention are discussed and integrated with recent observations on the role of top-down constraints and the emerging need for a layered model of attention in which saliency is not the only factor guiding attention. Visual attention is then explained by the interaction of several modulating factors, such as objects, value, plans and saliency. Then we introduce our probabilistic formulation of attention deployment in real scene. The model is based on the rationale that oculomotor control depends on two interacting but distinct processes: an attentional process that assigns value to the sources of information and motor process that flexibly links information with action.
In such framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the reward of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects.
In the experimental section the model is tested in laboratory condition, comparing model simulations with data from eye tracking experiments. The comparison is qualitative in terms of observable scan paths and quantitative in terms of statistical similarity of gaze shift amplitude. Experiments are performed using eye tracking data from both a publicly available dataset of face and text and from newly performed eye-tracking experiments on a dataset of street view pictures containing text. The last part of this thesis is dedicated to study the extent to which the proposed model can account for human eye movements in a low constrained setting. We used a mobile eye tracking device and an ad-hoc developed methodology to compare model simulated eye data with the human eye data from mobile eye tracking recordings. Such setting allow to test the model in an incomplete visual information condition, reproducing a close to real-life search task.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Giuseppe Boccignone;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-6-4 Medium  
  Area Expedition Conference  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ Cla2014 Serial 2571  
Permanent link to this record
 

 
Author Jon Almazan edit  openurl
  Title Learning to Represent Handwritten Shapes and Words for Matching and Recognition Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Writing is one of the most important forms of communication and for centuries, handwriting had been the most reliable way to preserve knowledge. However, despite the recent development of printing houses and electronic devices, handwriting is still broadly used for taking notes, doing annotations, or sketching ideas.
Transferring the ability of understanding handwritten text or recognizing handwritten shapes to computers has been the goal of many researches due to its huge importance for many different fields. However, designing good representations to deal with handwritten shapes, e.g. symbols or words, is a very challenging problem due to the large variability of these kinds of shapes. One of the consequences of working with handwritten shapes is that we need representations to be robust, i.e., able to adapt to large intra-class variability. We need representations to be discriminative, i.e., able to learn what are the differences between classes. And, we need representations to be efficient, i.e., able to be rapidly computed and compared. Unfortunately, current techniques of handwritten shape representation for matching and recognition do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of learning to represent handwritten shapes aimed at retrieval and recognition tasks. Concretely, on the first part of the thesis, we focus on the general problem of representing any kind of handwritten shape. We first present a novel shape descriptor based on a deformable grid that deals with large deformations by adapting to the shape and where the cells of the grid can be used to extract different features. Then, we propose to use this descriptor to learn statistical models, based on the Active Appearance Model, that jointly learns the variability in structure and texture of a given class. Then, on the second part, we focus on a concrete application, the problem of representing handwritten words, for the tasks of word spotting, where the goal is to find all instances of a query word in a dataset of images, and recognition. First, we address the segmentation-free problem and propose an unsupervised, sliding-window-based approach that achieves state-of- the-art results in two public datasets. Second, we address the more challenging multi-writer problem, where the variability in words exponentially increases. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace, and where those that represent the same word are close together. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. This leads to a low-dimensional, unified representation of word images and strings, resulting in a method that allows one to perform either image and text searches, as well as image transcription, in a unified framework. We evaluate our methods on different public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ Alm2014 Serial 2572  
Permanent link to this record
 

 
Author David Fernandez edit  isbn
openurl 
  Title Contextual Word Spotting in Historical Handwritten Documents Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract There are countless collections of historical documents in archives and libraries that contain plenty of valuable information for historians and researchers. The extraction of this information has become a central task among the Document Analysis researches and practitioners.
There is an increasing interest to digital preserve and provide access to these kind of documents. But only the digitalization is not enough for the researchers. The extraction and/or indexation of information of this documents has had an increased interest among researchers. In many cases, and in particular in historical manuscripts, the full transcription of these documents is extremely dicult due the inherent de ciencies: poor physical preservation, di erent writing styles, obsolete languages, etc. Word spotting has become a popular an ecient alternative to full transcription. It inherently involves a high level of degradation in the images. The search of words is holistically
formulated as a visual search of a given query shape in a larger image, instead of recognising the input text and searching the query word with an ascii string comparison. But the performance of classical word spotting approaches depend on the degradation level of the images being unacceptable in many cases . In this thesis we have proposed a novel paradigm called contextual word spotting method that uses the contextual/semantic information to achieve acceptable results whereas classical word spotting does not reach. The contextual word spotting framework proposed in this thesis is a segmentation-based word spotting approach, so an ecient word segmentation is needed. Historical handwritten
documents present some common diculties that can increase the diculties the extraction of the words. We have proposed a line segmentation approach that formulates the problem as nding the central part path in the area between two consecutive lines. This is solved as a graph traversal problem. A path nding algorithm is used to nd the optimal path in a graph, previously computed, between the text lines. Once the text lines are extracted, words are localized inside the text lines using a word segmentation technique from the state of the
art. Classical word spotting approaches can be improved using the contextual information of the documents. We have introduced a new framework, oriented to handwritten documents that present a highly structure, to extract information making use of context. The framework is an ecient tool for semi-automatic transcription that uses the contextual information to achieve better results than classical word spotting approaches. The contextual information is
automatically discovered by recognizing repetitive structures and categorizing all the words according to semantic classes. The most frequent words in each semantic cluster are extracted and the same text is used to transcribe all them. The experimental results achieved in this thesis outperform classical word spotting approaches demonstrating the suitability of the proposed ensemble architecture for spotting words in historical handwritten documents using contextual information.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-7-1 Medium  
  Area Expedition Conference  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ Fer2014 Serial 2573  
Permanent link to this record
 

 
Author Lluis Pere de las Heras edit  isbn
openurl 
  Title Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Di erent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very speci c problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on di erent data and on di erent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at di erent levels that are designed from a generic perspective. Firstly, we introduce three di erent strategies for the detection of symbols. The fi rst method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The fi rst one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological de nition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-8-8 Medium  
  Area Expedition Conference  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ Her2014 Serial 2574  
Permanent link to this record
 

 
Author Hongxing Gao edit  isbn
openurl 
  Title Focused Structural Document Image Retrieval in Digital Mailroom Applications Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work, we develop a generic framework that is able to handle the document retrieval problem in various scenarios such as searching for full page matches or retrieving the counterparts for specific document areas, focusing on their structural similarity or letting their visual resemblance to play a dominant role. Based on the spatial indexing technique, we propose to search for matches of local key-region pairs carrying both structural and visual information from the collection while a scheme allowing to adjust the relative contribution of structural and visual similarity is presented.
Based on the fact that the structure of documents is tightly linked with the distance among their elements, we firstly introduce an efficient detector named Distance Transform based Maximally Stable Extremal Regions (DTMSER). We illustrate that this detector is able to efficiently extract the structure of a document image as a dendrogram (hierarchical tree) of multi-scale key-regions that roughly correspond to letters, words and paragraphs. We demonstrate that, without benefiting from the structure information, the key-regions extracted by the DTMSER algorithm achieve better results comparing with state-of-the-art methods while much less amount of key-regions are employed.
We subsequently propose a pair-wise Bag of Words (BoW) framework to efficiently embed the explicit structure extracted by the DTMSER algorithm. We represent each document as a list of key-region pairs that correspond to the edges in the dendrogram where inclusion relationship is encoded. By employing those structural key-region pairs as the pooling elements for generating the histogram of features, the proposed method is able to encode the explicit inclusion relations into a BoW representation. The experimental results illustrate that the pair-wise BoW, powered by the embedded structural information, achieves remarkable improvement over the conventional BoW and spatial pyramidal BoW methods.
To handle various retrieval scenarios in one framework, we propose to directly query a series of key-region pairs, carrying both structure and visual information, from the collection. We introduce the spatial indexing techniques to the document retrieval community to speed up the structural relationship computation for key-region pairs. We firstly test the proposed framework in a full page retrieval scenario where structurally similar matches are expected. In this case, the pair-wise querying method achieves notable improvement over the BoW and spatial pyramidal BoW frameworks. Furthermore, we illustrate that the proposed method is also able to handle focused retrieval situations where the queries are defined as a specific interesting partial areas of the images. We examine our method on two types of focused queries: structure-focused and exact queries. The experimental results show that, the proposed generic framework obtains nearly perfect precision on both types of focused queries while it is the first framework able to tackle structure-focused queries, setting a new state of the art in the field.
Besides, we introduce a line verification method to check the spatial consistency among the matched key-region pairs. We propose a computationally efficient version of line verification through a two step implementation. We first compute tentative localizations of the query and subsequently employ them to divide the matched key-region pairs into several groups, then line verification is performed within each group while more precise bounding boxes are computed. We demonstrate that, comparing with the standard approach (based on RANSAC), the line verification proposed generally achieves much higher recall with slight loss on precision on specific queries.
 
  Address January 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Dimosthenis Karatzas;Marçal Rusiñol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-0-7 Medium  
  Area Expedition Conference  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ Gao2015 Serial 2577  
Permanent link to this record
 

 
Author Olivier Lefebvre; Pau Riba; Charles Fournier; Alicia Fornes; Josep Llados; Rejean Plamondon; Jules Gagnon-Marchand edit   pdf
url  openurl
  Title Monitoring neuromotricity on-line: a cloud computing approach Type Conference Article
  Year 2015 Publication 17th Conference of the International Graphonomics Society IGS2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a patient's health by analyzing handwritten strokes. We use a cloud computing approach to analyze stroke data sampled on a commercial tablet working on the Android platform and a distant server to perform complex calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the data and to ease the development of the project. The communication between the tablet, the cloud and the server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used to classify the data obtained by the free drawing test. The functions presented in this paper are still currently under development and other improvements are needed before launching the application in the public domain.  
  Address Pointe-à-Pitre; Guadeloupe; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ LRF2015 Serial 2617  
Permanent link to this record
 

 
Author Youssef El Rhabi; Simon Loic; Brun Luc edit   pdf
url  openurl
  Title Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel Type Conference Article
  Year 2015 Publication 15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration  
  Abstract Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data.  
  Address Amiens; France; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ORASIS  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ RLL2015 Serial 2626  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Sparse Radial Sampling LBP for Writer Identification Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 716-720  
  Keywords  
  Abstract In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ NBL2015 Serial 2692  
Permanent link to this record
 

 
Author Suman Ghosh; Lluis Gomez; Dimosthenis Karatzas; Ernest Valveny edit   pdf
doi  openurl
  Title Efficient indexing for Query By String text retrieval Type Conference Article
  Year 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal  
  Volume Issue Pages 1236 - 1240  
  Keywords  
  Abstract This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CBDAR  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ GGK2015 Serial 2693  
Permanent link to this record
 

 
Author J.Kuhn; A.Nussbaumer; J.Pirker; Dimosthenis Karatzas; A. Pagani; O.Conlan; M.Memmel; C.M.Steiner; C.Gutl; D.Albert; Andreas Dengel edit  url
doi  openurl
  Title Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space Type Conference Article
  Year 2015 Publication Workshop Proceedings on the 11th International Conference on Intelligent Environments Abbreviated Journal  
  Volume 19 Issue Pages 373-380  
  Keywords  
  Abstract Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.  
  Address Praga; Chzech Republic; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IE  
  Notes (up) DAG; 600.077 Approved no  
  Call Number Admin @ si @ KNP2015 Serial 2694  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: