toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title StacMR: Scene-Text Aware Cross-Modal Retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2219-2229  
  Keywords (up)  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MRG2021a Serial 3492  
Permanent link to this record
 

 
Author Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas edit  url
openurl 
  Title Real-time Lexicon-free Scene Text Retrieval Type Journal Article
  Year 2021 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 110 Issue Pages 107656  
  Keywords (up)  
  Abstract In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129; 601.338 Approved no  
  Call Number Admin @ si @ MTD2021 Serial 3493  
Permanent link to this record
 

 
Author Lluis Gomez; Anguelos Nicolaou; Marçal Rusiñol; Dimosthenis Karatzas edit  openurl
  Title 12 years of ICDAR Robust Reading Competitions: The evolution of reading systems for unconstrained text understanding Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number GNR2020 Serial 3494  
Permanent link to this record
 

 
Author Lluis Gomez; Dena Bazazian; Dimosthenis Karatzas edit  openurl
  Title Historical review of scene text detection research Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GBK2020 Serial 3495  
Permanent link to this record
 

 
Author Jon Almazan; Lluis Gomez; Suman Ghosh; Ernest Valveny; Dimosthenis Karatzas edit  openurl
  Title WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Analysis”, K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ AGG2020 Serial 3496  
Permanent link to this record
 

 
Author Raul Gomez; Yahui Liu; Marco de Nadai; Dimosthenis Karatzas; Bruno Lepri; Nicu Sebe edit   pdf
url  openurl
  Title Retrieval Guided Unsupervised Multi-domain Image to Image Translation Type Conference Article
  Year 2020 Publication 28th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACM  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GLN2020 Serial 3497  
Permanent link to this record
 

 
Author Minesh Mathew; Dimosthenis Karatzas; C.V. Jawahar edit   pdf
openurl 
  Title DocVQA: A Dataset for VQA on Document Images Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2200-2209  
  Keywords (up)  
  Abstract We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MKJ2021 Serial 3498  
Permanent link to this record
 

 
Author Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer edit   pdf
url  openurl
  Title Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. Type Conference Article
  Year 2020 Publication International Workshop on Artificial Intelligence for Healthcare Applications Abbreviated Journal  
  Volume 12661 Issue Pages 476-489  
  Keywords (up)  
  Abstract Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; 600.121; 600.140; Approved no  
  Call Number Admin @ si @ BCF2020 Serial 3508  
Permanent link to this record
 

 
Author Manuel Carbonell; Pau Riba; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents Type Conference Article
  Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract The use of administrative documents to communicate and leave record of business information requires of methods
able to automatically extract and understand the content from
such documents in a robust and efficient way. In addition,
the semi-structured nature of these reports is specially suited
for the use of graph-based representations which are flexible
enough to adapt to the deformations from the different document
templates. Moreover, Graph Neural Networks provide the proper
methodology to learn relations among the data elements in
these documents. In this work we study the use of Graph
Neural Network architectures to tackle the problem of entity
recognition and relation extraction in semi-structured documents.
Our approach achieves state of the art results in the three
tasks involved in the process. Additionally, the experimentation
with two datasets of different nature demonstrates the good
generalization ability of our approach.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ CRV2020 Serial 3509  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Asma Bensalah; Jialuo Chen; Alicia Fornes; Michelle Waldispühl edit  url
doi  openurl
  Title A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted Type Journal Article
  Year 2023 Publication ACM Journal on Computing and Cultural Heritage Abbreviated Journal JOCCH  
  Volume 15 Issue 4 Pages 1-18  
  Keywords (up)  
  Abstract Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools.  
  Address  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBC2023 Serial 3732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: