toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Riba edit  isbn
openurl 
  Title Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance of leveraging the structural information when understanding images. Usually, graphs have been proposed as a suitable model to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects, or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition applications, there is a need to compare two objects. This operation, which is trivial when considering feature vectors defined in \(\mathbb{R}^n\), is not properly defined for graphs.


In this thesis, we have investigated the importance of the structural information from two perspectives, the traditional graph-based methods and the new advances on Geometric Deep Learning. On the one hand, we explore the problem of defining a graph representation and how to deal with it on a large scale and noisy scenario. On the other hand, Graph Neural Networks are proposed to first redefine a Graph Edit Distance methodologies as a metric learning problem, and second, to apply them in a real use case scenario for the detection of repetitive patterns which define tables in invoice documents. As experimental framework, we have validated the different methodological contributions in the domain of Document Image Analysis and Recognition.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-6-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Rib20 Serial 3478  
Permanent link to this record
 

 
Author Raul Gomez edit  isbn
openurl 
  Title Exploiting the Interplay between Visual and Textual Data for Scene Interpretation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Machine learning experimentation under controlled scenarios and standard datasets is necessary to compare algorithms performance by evaluating all of them in the same setup. However, experimentation on how those algorithms perform on unconstrained data and applied tasks to solve real world problems is also a must to ascertain how that research can contribute to our society.
In this dissertation we experiment with the latest computer vision and natural language processing algorithms applying them to multimodal scene interpretation. Particularly, we research on how image and text understanding can be jointly exploited to address real world problems, focusing on learning from Social Media data.
We address several tasks that involve image and textual information, discuss their characteristics and offer our experimentation conclusions. First, we work on detection of scene text in images. Then, we work with Social Media posts, exploiting the captions associated to images as supervision to learn visual features, which we apply to multimodal semantic image retrieval. Subsequently, we work with geolocated Social Media images with associated tags, experimenting on how to use the tags as supervision, on location sensitive image retrieval and on exploiting location information for image tagging. Finally, we work on a specific classification problem of Social Media publications consisting on an image and a text: Multimodal hate speech classification.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez;Jaume Gibert  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-7-1 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Gom20 Serial 3479  
Permanent link to this record
 

 
Author Sounak Dey edit  isbn
openurl 
  Title Mapping between Images and Conceptual Spaces: Sketch-based Image Retrieval Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract This thesis presents several contributions to the literature of sketch based image retrieval (SBIR). In SBIR the first challenge we face is how to map two different domains to common space for effective retrieval of images, while tackling the different levels of abstraction people use to express their notion of objects around while sketching. To this extent we first propose a cross-modal learning framework that maps both sketches and text into a joint embedding space invariant to depictive style, while preserving semantics. Then we have also investigated different query types possible to encompass people's dilema in sketching certain world objects. For this we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set.

Finally, we explore the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognises two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended. We also in this dissertation pave the path to the future direction of research in this domain.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-8-8 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Dey20 Serial 3480  
Permanent link to this record
 

 
Author Lei Kang edit  isbn
openurl 
  Title Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Marçal Rusiñol;Mauricio Villegas  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-0-9 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Kan20 Serial 3482  
Permanent link to this record
 

 
Author Manuel Carbonell edit  isbn
openurl 
  Title Neural Information Extraction from Semi-structured Documents A Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Sectors as fintech, legaltech or insurance process an inflow of millions of forms, invoices, id documents, claims or similar every day. Together with these, historical archives provide gigantic amounts of digitized documents containing useful information that needs to be stored in machine encoded text with a meaningful structure. This procedure, known as information extraction (IE) comprises the steps of localizing and recognizing text, identifying named entities contained in it and optionally finding relationships among its elements. In this work we explore multi-task neural models at image and graph level to solve all steps in a unified way. While doing so we find benefits and limitations of these end-to-end approaches in comparison with sequential separate methods. More specifically, we first propose a method to produce textual as well as semantic labels with a unified model from handwritten text line images. We do so with the use of a convolutional recurrent neural model trained with connectionist temporal classification to predict the textual as well as semantic information encoded in the images. Secondly, motivated by the success of this approach we investigate the unification of the localization and recognition tasks of handwritten text in full pages with an end-to-end model, observing benefits in doing so. Having two models that tackle information extraction subsequent task pairs in an end-to-end to end manner, we lastly contribute with a method to put them all together in a single neural network to solve the whole information extraction pipeline in a unified way. Doing so we observe some benefits and some limitations in the approach, suggesting that in certain cases it is beneficial to train specialized models that excel at a single challenging task of the information extraction process, as it can be the recognition of named entities or the extraction of relationships between them. For this reason we lastly study the use of the recently arrived graph neural network architectures for the semantic tasks of the information extraction process, which are recognition of named entities and relation extraction, achieving promising results on the relation extraction part.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Mauricio Villegas;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-1-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Car20 Serial 3483  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue (up) Pages 4022-4032  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MDB2021 Serial 3491  
Permanent link to this record
 

 
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title StacMR: Scene-Text Aware Cross-Modal Retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue (up) Pages 2219-2229  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MRG2021a Serial 3492  
Permanent link to this record
 

 
Author Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas edit  url
openurl 
  Title Real-time Lexicon-free Scene Text Retrieval Type Journal Article
  Year 2021 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 110 Issue (up) Pages 107656  
  Keywords  
  Abstract In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129; 601.338 Approved no  
  Call Number Admin @ si @ MTD2021 Serial 3493  
Permanent link to this record
 

 
Author Lluis Gomez; Anguelos Nicolaou; Marçal Rusiñol; Dimosthenis Karatzas edit  openurl
  Title 12 years of ICDAR Robust Reading Competitions: The evolution of reading systems for unconstrained text understanding Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number GNR2020 Serial 3494  
Permanent link to this record
 

 
Author Lluis Gomez; Dena Bazazian; Dimosthenis Karatzas edit  openurl
  Title Historical review of scene text detection research Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GBK2020 Serial 3495  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: