toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Manuel Carbonell; Alicia Fornes; Mauricio Villegas; Josep Llados edit   pdf
doi  openurl
  Title A Neural Model for Text Localization, Transcription and Named Entity Recognition in Full Pages Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 136 Issue Pages 219-227  
  Keywords  
  Abstract In the last years, the consolidation of deep neural network architectures for information extraction in document images has brought big improvements in the performance of each of the tasks involved in this process, consisting of text localization, transcription, and named entity recognition. However, this process is traditionally performed with separate methods for each task. In this work we propose an end-to-end model that combines a one stage object detection network with branches for the recognition of text and named entities respectively in a way that shared features can be learned simultaneously from the training error of each of the tasks. By doing so the model jointly performs handwritten text detection, transcription, and named entity recognition at page level with a single feed forward step. We exhaustively evaluate our approach on different datasets, discussing its advantages and limitations compared to sequential approaches. The results show that the model is capable of benefiting from shared features by simultaneously solving interdependent tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 601.311; 600.121 Approved no  
  Call Number Admin @ si @ CFV2020 Serial 3451  
Permanent link to this record
 

 
Author B. Gautam; Oriol Ramos Terrades; Joana Maria Pujadas-Mora; Miquel Valls-Figols edit   pdf
url  openurl
  Title Knowledge graph based methods for record linkage Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 136 Issue Pages 127-133  
  Keywords  
  Abstract Nowadays, it is common in Historical Demography the use of individual-level data as a consequence of a predominant life-course approach for the understanding of the demographic behaviour, family transition, mobility, etc. Advanced record linkage is key since it allows increasing the data complexity and its volume to be analyzed. However, current methods are constrained to link data from the same kind of sources. Knowledge graph are flexible semantic representations, which allow to encode data variability and semantic relations in a structured manner.

In this paper we propose the use of knowledge graph methods to tackle record linkage tasks. The proposed method, named WERL, takes advantage of the main knowledge graph properties and learns embedding vectors to encode census information. These embeddings are properly weighted to maximize the record linkage performance. We have evaluated this method on benchmark data sets and we have compared it to related methods with stimulating and satisfactory results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ GRP2020 Serial 3453  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Y.Kessentini edit   pdf
url  doi
openurl 
  Title DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 44 Issue 3 Pages 1180-1191  
  Keywords  
  Abstract Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.  
  Address 1 March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.230; 600.121; 600.140 Approved no  
  Call Number Admin @ si @ SoK2022 Serial 3454  
Permanent link to this record
 

 
Author Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal edit   pdf
url  openurl
  Title Evaluation of the Effect of Improper Segmentation on Word Spotting Type Journal Article
  Year 2019 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 22 Issue Pages 361-374  
  Keywords  
  Abstract Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.084; 600.121; 600.140; 600.129 Approved no  
  Call Number Admin @ si @ DNL2019 Serial 3455  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  url
doi  openurl
  Title Recurrent Comparator with attention models to detect counterfeit documents Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper is focused on the detection of counterfeit documents via the recurrent comparison of the security textured background regions of two images. The main contributions are twofold: first we apply and adapt a recurrent comparator architecture with attention mechanism to the counterfeit detection task, which constructs a representation of the background regions by recurrently condition the next observation, learning the difference between genuine and counterfeit images through iterative glimpses. Second we propose a new counterfeit document dataset to ensure the generalization of the learned model towards the detection of the lack of resolution during the counterfeit manufacturing. The presented network, outperforms state-of-the-art classification approaches for counterfeit detection as demonstrated in the evaluation.  
  Address Sidney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.140; 600.121; 601.269 Approved no  
  Call Number Admin @ si @ BRL2019 Serial 3456  
Permanent link to this record
 

 
Author Fernando Vilariño edit  openurl
  Title Library Living Lab, Numérisation 3D des chapiteaux du cloître de Saint-Cugat : des citoyens co- créant le nouveau patrimoine culturel numérique Type Conference Article
  Year 2019 Publication Intersectorialité et approche Living Labs. Entretiens Jacques-Cartier Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Montreal; Canada; December 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG; 600.140; 600.121;SIAI Approved no  
  Call Number Admin @ si @ Vil2019a Serial 3457  
Permanent link to this record
 

 
Author Fernando Vilariño edit  openurl
  Title Public Libraries Exploring how technology transforms the cultural experience of people Type Conference Article
  Year 2019 Publication Workshop on Social Impact of AI. Open Living Lab Days Conference. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Thessaloniki; Grecia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG; 600.140; 600.121;SIAI Approved no  
  Call Number Admin @ si @ Vil2019b Serial 3458  
Permanent link to this record
 

 
Author Fernando Vilariño edit  openurl
  Title Unveiling the Social Impact of AI Type Conference Article
  Year 2020 Publication Workshop at Digital Living Lab Days Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG; 600.121; 600.140;SIAI Approved no  
  Call Number Admin @ si @ Vil2020 Serial 3459  
Permanent link to this record
 

 
Author Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song edit   pdf
url  doi
openurl 
  Title Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval Type Conference Article
  Year 2019 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2179-2188  
  Keywords  
  Abstract In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research.  
  Address Long beach; CA; USA; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.140; 600.121; 600.097 Approved no  
  Call Number Admin @ si @ DRD2019 Serial 3462  
Permanent link to this record
 

 
Author Fernando Vilariño edit  openurl
  Title 3D Scanning of Capitals at Library Living Lab Type Book Whole
  Year 2019 Publication “Living Lab Projects 2019”. ENoLL. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG; 600.140; 600.121;SIAI Approved no  
  Call Number Admin @ si @ Vil2019c Serial 3463  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: