toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Francisco Cruz; Oriol Ramos Terrades edit  openurl
  Title A probabilistic framework for handwritten text line segmentation Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Document Analysis; Text Line Segmentation; EM algorithm; Probabilistic Graphical Models; Parameter Learning  
  Abstract We successfully combine Expectation-Maximization algorithm and variational
approaches for parameter learning and computing inference on Markov random fields. This is a general method that can be applied to many computer
vision tasks. In this paper, we apply it to handwritten text line segmentation.
We conduct several experiments that demonstrate that our method deal with
common issues of this task, such as complex document layout or non-latin
scripts. The obtained results prove that our method achieve state-of-theart performance on different benchmark datasets without any particular fine
tuning step.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ CrR2018 Serial 3253  
Permanent link to this record
 

 
Author Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone edit  url
openurl 
  Title DSD: document sparse-based denoising algorithm Type Journal Article
  Year 2019 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 22 Issue 1 Pages 177–186  
  Keywords Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models  
  Abstract In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ DRT2019 Serial 3254  
Permanent link to this record
 

 
Author Sounak Dey; Palaiahnakote Shivakumara; K.S. Raghunanda; Umapada Pal; Tong Lu; G. Hemantha Kumar; Chee Seng Chan edit  url
openurl 
  Title Script independent approach for multi-oriented text detection in scene image Type Journal Article
  Year 2017 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 242 Issue Pages 96-112  
  Keywords  
  Abstract Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ DSR2017 Serial 3260  
Permanent link to this record
 

 
Author Raul Gomez; Ali Furkan Biten; Lluis Gomez; Jaume Gibert; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Selective Style Transfer for Text Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 805-812  
  Keywords transfer; text style transfer; data augmentation; scene text detection  
  Abstract This paper explores the possibilities of image style transfer applied to text maintaining the original transcriptions. Results on different text domains (scene text, machine printed text and handwritten text) and cross-modal results demonstrate that this is feasible, and open different research lines. Furthermore, two architectures for selective style transfer, which means
transferring style to only desired image pixels, are proposed. Finally, scene text selective style transfer is evaluated as a data augmentation technique to expand scene text detection datasets, resulting in a boost of text detectors performance. Our implementation of the described models is publicly available.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.135; 601.338; 601.310; 600.121 Approved no  
  Call Number GBG2019 Serial 3265  
Permanent link to this record
 

 
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Self-Supervised Learning from Web Data for Multimodal Retrieval Type Book Chapter
  Year 2019 Publication Multi-Modal Scene Understanding Book Abbreviated Journal  
  Volume Issue Pages 279-306  
  Keywords self-supervised learning; webly supervised learning; text embeddings; multimodal retrieval; multimodal embedding  
  Abstract Self-Supervised learning from multimodal image and text data allows deep neural networks to learn powerful features with no need of human annotated data. Web and Social Media platforms provide a virtually unlimited amount of this multimodal data. In this work we propose to exploit this free available data to learn a multimodal image and text embedding, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the proposed pipeline can learn from images with associated text without supervision and analyze the semantic structure of the learnt joint image and text embeddingspace. Weperformathoroughanalysisandperformancecomparisonoffivedifferentstateof the art text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text basedimageretrievaltask,andweclearlyoutperformstateoftheartintheMIRFlickrdatasetwhen training in the target data. Further, we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.129; 601.338; 601.310 Approved no  
  Call Number Admin @ si @ GGG2019 Serial 3266  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit  url
openurl 
  Title From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 123 Issue Pages 1-8  
  Keywords  
  Abstract Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BRC2019 Serial 3275  
Permanent link to this record
 

 
Author Arnau Baro; Jialuo Chen; Alicia Fornes; Beata Megyesi edit   pdf
doi  openurl
  Title Towards a generic unsupervised method for transcription of encoded manuscripts Type Conference Article
  Year 2019 Publication 3rd International Conference on Digital Access to Textual Cultural Heritage Abbreviated Journal  
  Volume Issue Pages 73-78  
  Keywords A. Baró, J. Chen, A. Fornés, B. Megyesi.  
  Abstract Historical ciphers, a special type of manuscripts, contain encrypted information, important for the interpretation of our history. The first step towards decipherment is to transcribe the images, either manually or by automatic image processing techniques. Despite the improvements in handwritten text recognition (HTR) thanks to deep learning methodologies, the need of labelled data to train is an important limitation. Given that ciphers often use symbol sets across various alphabets and unique symbols without any transcription scheme available, these supervised HTR techniques are not suitable to transcribe ciphers. In this paper we propose an un-supervised method for transcribing encrypted manuscripts based on clustering and label propagation, which has been successfully applied to community detection in networks. We analyze the performance on ciphers with various symbol sets, and discuss the advantages and drawbacks compared to supervised HTR methods.  
  Address Brussels; May 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference DATeCH  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BCF2019 Serial 3276  
Permanent link to this record
 

 
Author Lei Kang; Marçal Rusiñol; Alicia Fornes; Pau Riba; Mauricio Villegas edit   pdf
url  doi
openurl 
  Title Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step.  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.129; 600.140; 601.302; 601.312; 600.121 Approved no  
  Call Number Admin @ si @ KRF2020 Serial 3446  
Permanent link to this record
 

 
Author Raul Gomez; Jaume Gibert; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Exploring Hate Speech Detection in Multimodal Publications Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this work we target the problem of hate speech detection in multimodal publications formed by a text and an image. We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection. We provide quantitative and qualitative results and analyze the challenges of the proposed task. We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text. We discuss why and open the field and the dataset for further research.  
  Address Aspen; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GGG2020a Serial 3280  
Permanent link to this record
 

 
Author Marçal Rusiñol edit  url
openurl 
  Title Classificació semàntica i visual de documents digitals Type Journal
  Year 2019 Publication Revista de biblioteconomia i documentacio Abbreviated Journal  
  Volume Issue Pages 75-86  
  Keywords  
  Abstract Se analizan los sistemas de procesamiento automático que trabajan sobre documentos digitalizados con el objetivo de describir los contenidos. De esta forma contribuyen a facilitar el acceso, permitir la indización automática y hacer accesibles los documentos a los motores de búsqueda. El objetivo de estas tecnologías es poder entrenar modelos computacionales que sean capaces de clasificar, agrupar o realizar búsquedas sobre documentos digitales. Así, se describen las tareas de clasificación, agrupamiento y búsqueda. Cuando utilizamos tecnologías de inteligencia artificial en los sistemas de
clasificación esperamos que la herramienta nos devuelva etiquetas semánticas; en sistemas de agrupamiento que nos devuelva documentos agrupados en clusters significativos; y en sistemas de búsqueda esperamos que dada una consulta, nos devuelva una lista ordenada de documentos en función de la relevancia. A continuación se da una visión de conjunto de los métodos que nos permiten describir los documentos digitales, tanto de manera visual (cuál es su apariencia), como a partir de sus contenidos semánticos (de qué hablan). En cuanto a la descripción visual de documentos se aborda el estado de la cuestión de las representaciones numéricas de documentos digitalizados
tanto por métodos clásicos como por métodos basados en el aprendizaje profundo (deep learning). Respecto de la descripción semántica de los contenidos se analizan técnicas como el reconocimiento óptico de caracteres (OCR); el cálculo de estadísticas básicas sobre la aparición de las diferentes palabras en un texto (bag-of-words model); y los métodos basados en aprendizaje profundo como el método word2vec, basado en una red neuronal que, dadas unas cuantas palabras de un texto, debe predecir cuál será la
siguiente palabra. Desde el campo de las ingenierías se están transfiriendo conocimientos que se han integrado en productos o servicios en los ámbitos de la archivística, la biblioteconomía, la documentación y las plataformas de gran consumo, sin embargo los algoritmos deben ser lo suficientemente eficientes no sólo para el reconocimiento y transcripción literal sino también para la capacidad de interpretación de los contenidos.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 600.135; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ Rus2019 Serial 3282  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: