|
Records |
Links |
|
Author |
George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar |
|
|
Title |
Reading Between the Lanes: Text VideoQA on the Road |
Type |
Conference Article |
|
Year |
2023 |
Publication |
17th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
14192 |
Issue |
|
Pages |
137–154 |
|
|
Keywords |
VideoQA; scene text; driving videos |
|
|
Abstract |
Text and signs around roads provide crucial information for drivers, vital for safe navigation and situational awareness. Scene text recognition in motion is a challenging problem, while textual cues typically appear for a short time span, and early detection at a distance is necessary. Systems that exploit such information to assist the driver should not only extract and incorporate visual and textual cues from the video stream but also reason over time. To address this issue, we introduce RoadTextVQA, a new dataset for the task of video question answering (VideoQA) in the context of driver assistance. RoadTextVQA consists of 3, 222 driving videos collected from multiple countries, annotated with 10, 500 questions, all based on text or road signs present in the driving videos. We assess the performance of state-of-the-art video question answering models on our RoadTextVQA dataset, highlighting the significant potential for improvement in this domain and the usefulness of the dataset in advancing research on in-vehicle support systems and text-aware multimodal question answering. The dataset is available at http://cvit.iiit.ac.in/research/projects/cvit-projects/roadtextvqa. |
|
|
Address |
San Jose; CA; USA; August 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TMG2023 |
Serial |
3906 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol |
|
|
Title |
Accelerating Transformer-Based Scene Text Detection and Recognition via Token Pruning |
Type |
Conference Article |
|
Year |
2023 |
Publication |
17th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
14192 |
Issue |
|
Pages |
106-121 |
|
|
Keywords |
Scene Text Detection; Scene Text Recognition; Transformer Acceleration |
|
|
Abstract |
Scene text detection and recognition is a crucial task in computer vision with numerous real-world applications. Transformer-based approaches are behind all current state-of-the-art models and have achieved excellent performance. However, the computational requirements of the transformer architecture makes training these methods slow and resource heavy. In this paper, we introduce a new token pruning strategy that significantly decreases training and inference times without sacrificing performance, striking a balance between accuracy and speed. We have applied this pruning technique to our own end-to-end transformer-based scene text understanding architecture. Our method uses a separate detection branch to guide the pruning of uninformative image features, which significantly reduces the number of tokens at the input of the transformer. Experimental results show how our network is able to obtain competitive results on multiple public benchmarks while running at significantly higher speeds. |
|
|
Address |
San Jose; CA; USA; August 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GKR2023a |
Serial |
3907 |
|
Permanent link to this record |
|
|
|
|
Author |
Adarsh Tiwari; Sanket Biswas; Josep Llados |
|
|
Title |
Can Pre-trained Language Models Help in Understanding Handwritten Symbols? |
Type |
Conference Article |
|
Year |
2023 |
Publication |
17th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
14193 |
Issue |
|
Pages |
199–211 |
|
|
Keywords |
|
|
|
Abstract |
The emergence of transformer models like BERT, GPT-2, GPT-3, RoBERTa, T5 for natural language understanding tasks has opened the floodgates towards solving a wide array of machine learning tasks in other modalities like images, audio, music, sketches and so on. These language models are domain-agnostic and as a result could be applied to 1-D sequences of any kind. However, the key challenge lies in bridging the modality gap so that they could generate strong features beneficial for out-of-domain tasks. This work focuses on leveraging the power of such pre-trained language models and discusses the challenges in predicting challenging handwritten symbols and alphabets. |
|
|
Address |
San Jose; CA; USA; August 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBL2023 |
Serial |
3908 |
|
Permanent link to this record |
|
|
|
|
Author |
Stepan Simsa; Michal Uricar; Milan Sulc; Yash Patel; Ahmed Hamdi; Matej Kocian; Matyas Skalicky; Jiri Matas; Antoine Doucet; Mickael Coustaty; Dimosthenis Karatzas |
|
|
Title |
Overview of DocILE 2023: Document Information Localization and Extraction |
Type |
Conference Article |
|
Year |
2023 |
Publication |
International Conference of the Cross-Language Evaluation Forum for European Languages |
Abbreviated Journal |
|
|
|
Volume |
14163 |
Issue |
|
Pages |
276–293 |
|
|
Keywords |
Information Extraction; Computer Vision; Natural Language Processing; Optical Character Recognition; Document Understanding |
|
|
Abstract |
This paper provides an overview of the DocILE 2023 Competition, its tasks, participant submissions, the competition results and possible future research directions. This first edition of the competition focused on two Information Extraction tasks, Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR). Both of these tasks require detection of pre-defined categories of information in business documents. The second task additionally requires correctly grouping the information into tuples, capturing the structure laid out in the document. The competition used the recently published DocILE dataset and benchmark that stays open to new submissions. The diversity of the participant solutions indicates the potential of the dataset as the submissions included pure Computer Vision, pure Natural Language Processing, as well as multi-modal solutions and utilized all of the parts of the dataset, including the annotated, synthetic and unlabeled subsets. |
|
|
Address |
Thessaloniki; Greece; September 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLEF |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ SUS2023a |
Serial |
3924 |
|
Permanent link to this record |
|
|
|
|
Author |
Soumya Jahagirdar; Minesh Mathew; Dimosthenis Karatzas; CV Jawahar |
|
|
Title |
Understanding Video Scenes Through Text: Insights from Text-Based Video Question Answering |
Type |
Conference Article |
|
Year |
2023 |
Publication |
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Researchers have extensively studied the field of vision and language, discovering that both visual and textual content is crucial for understanding scenes effectively. Particularly, comprehending text in videos holds great significance, requiring both scene text understanding and temporal reasoning. This paper focuses on exploring two recently introduced datasets, NewsVideoQA and M4-ViteVQA, which aim to address video question answering based on textual content. The NewsVideoQA dataset contains question-answer pairs related to the text in news videos, while M4- ViteVQA comprises question-answer pairs from diverse categories like vlogging, traveling, and shopping. We provide an analysis of the formulation of these datasets on various levels, exploring the degree of visual understanding and multi-frame comprehension required for answering the questions. Additionally, the study includes experimentation with BERT-QA, a text-only model, which demonstrates comparable performance to the original methods on both datasets, indicating the shortcomings in the formulation of these datasets. Furthermore, we also look into the domain adaptation aspect by examining the effectiveness of training on M4-ViteVQA and evaluating on NewsVideoQA and vice-versa, thereby shedding light on the challenges and potential benefits of out-of-domain training. |
|
|
Address |
Paris; France; October 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCVW |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ JMK2023 |
Serial |
3946 |
|
Permanent link to this record |
|
|
|
|
Author |
Jordy Van Landeghem; Ruben Tito; Lukasz Borchmann; Michal Pietruszka; Pawel Joziak; Rafal Powalski; Dawid Jurkiewicz; Mickael Coustaty; Bertrand Anckaert; Ernest Valveny; Matthew Blaschko; Sien Moens; Tomasz Stanislawek |
|
|
Title |
Document Understanding Dataset and Evaluation (DUDE) |
Type |
Conference Article |
|
Year |
2023 |
Publication |
20th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
19528-19540 |
|
|
Keywords |
|
|
|
Abstract |
We call on the Document AI (DocAI) community to re-evaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI. |
|
|
Address |
Paris; France; October 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LTB2023 |
Serial |
3948 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Perez Tito |
|
|
Title |
Exploring the role of Text in Visual Question Answering on Natural Scenes and Documents |
Type |
Book Whole |
|
Year |
2023 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Visual Question Answering (VQA) is the task where given an image and a natural language question, the objective is to generate a natural language answer. At the intersection between computer vision and natural language processing, this task can be seen as a measure of image understanding capabilities, as it requires to reason about objects, actions, colors, positions, the relations between the different elements as well as commonsense reasoning, world knowledge, arithmetic skills and natural language understanding. However, even though the text present in the images conveys important semantically rich information that is explicit and not available in any other form, most VQA methods remained illiterate, largely
ignoring the text despite its potential significance. In this thesis, we set out on a journey to bring reading capabilities to computer vision models applied to the VQA task, creating new datasets and methods that can read, reason and integrate the text with other visual cues in natural scene images and documents.
In Chapter 3, we address the combination of scene text with visual information to fully understand all the nuances of natural scene images. To achieve this objective, we define a new sub-task of VQA that requires reading the text in the image, and highlight the limitations of the current methods. In addition, we propose a new architecture that integrates both modalities and jointly reasons about textual and visual features. In Chapter 5, we shift the domain of VQA with reading capabilities and apply it on scanned industry document images, providing a high-level end-purpose perspective to Document Understanding, which has been
primarily focused on digitizing the document’s contents and extracting key values without considering the ultimate purpose of the extracted information. For this, we create a dataset which requires methods to reason about the unique and challenging elements of documents, such as text, images, tables, graphs and complex layouts, to provide accurate answers in natural language. However, we observed that explicit visual features provide a slight contribution in the overall performance, since the main information is usually conveyed within the text and its position. In consequence, in Chapter 6, we propose VQA on infographic images, seeking for document images with more visually rich elements that require to fully exploit visual information in order to answer the questions. We show the performance gap of
different methods when used over industry scanned and infographic images, and propose a new method that integrates the visual features in early stages, which allows the transformer architecture to exploit the visual features during the self-attention operation. Instead, in Chapter 7, we apply VQA on a big collection of single-page documents, where the methods must find which documents are relevant to answer the question, and provide the answer itself. Finally, in Chapter 8, mimicking real-world application problems where systems must process documents with multiple pages, we address the multipage document visual question answering task. We demonstrate the limitations of existing methods, including models specifically designed to process long sequences. To overcome these limitations, we propose
a hierarchical architecture that can process long documents, answer questions, and provide the index of the page where the information to answer the question is located as an explainability measure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
IMPRIMA |
Place of Publication |
|
Editor |
Ernest Valveny |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-124793-5-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Per2023 |
Serial |
3967 |
|
Permanent link to this record |
|
|
|
|
Author |
Alloy Das; Sanket Biswas; Umapada Pal; Josep Llados |
|
|
Title |
Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes |
Type |
Conference Article |
|
Year |
2024 |
Publication |
IEEE International Conference on Robotics and Automation in PACIFICO |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance. |
|
|
Address |
Yokohama; Japan; May 2024 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICRA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DBP2024 |
Serial |
3979 |
|
Permanent link to this record |
|
|
|
|
Author |
Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya |
|
|
Title |
Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance |
Type |
Conference Article |
|
Year |
2024 |
Publication |
Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
718-728 |
|
|
Keywords |
|
|
|
Abstract |
The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency. |
|
|
Address |
Waikoloa; Hawai; USA; January 2024 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DBB2024 |
Serial |
3986 |
|
Permanent link to this record |
|
|
|
|
Author |
Subhajit Maity; Sanket Biswas; Siladittya Manna; Ayan Banerjee; Josep Llados; Saumik Bhattacharya; Umapada Pal |
|
|
Title |
SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation |
Type |
Conference Article |
|
Year |
2023 |
Publication |
17th International Conference on Doccument Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
14187 |
Issue |
|
Pages |
342–360 |
|
|
Keywords |
|
|
|
Abstract |
Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: this https URL |
|
|
Address |
Document Layout Analysis; Document |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ MBM2023 |
Serial |
3990 |
|
Permanent link to this record |