|
Records |
Links |
|
Author |
Albert Gordo; Ernest Valveny |


|
|
Title |
A rotation invariant page layout descriptor for document classification and retrieval |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
481–485 |
|
|
Keywords |
|
|
|
Abstract |
Document classification usually requires of structural features such as the physical layout to obtain good accuracy rates on complex documents. This paper introduces a descriptor of the layout and a distance measure based on the cyclic dynamic time warping which can be computed in O(n2). This descriptor is translation invariant and can be easily modified to be scale and rotation invariant. Experiments with this descriptor and its rotation invariant modification are performed on the Girona archives database and compared against another common layout distance, the minimum weight edge cover. The experiments show that these methods outperform the MWEC both in accuracy and speed, particularly on rotated documents. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ GoV2009a |
Serial |
1175 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |


|
|
Title |
Logo Spotting by a Bag-of-words Approach for Document Categorization |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
111–115 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method for document categorization which processes incoming document images such as invoices or receipts. The categorization of these document images is done in terms of the presence of a certain graphical logo detected without segmentation. The graphical logos are described by a set of local features and the categorization of the documents is performed by the use of a bag-of-words model. Spatial coherence rules are added to reinforce the correct category hypothesis, aiming also to spot the logo inside the document image. Experiments which demonstrate the effectiveness of this system on a large set of real data are presented. |
|
|
Address |
Barcelona; Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RuL2009b |
Serial |
1179 |
|
Permanent link to this record |
|
|
|
|
Author |
Ricard Coll; Alicia Fornes; Josep Llados |


|
|
Title |
Graphological Analysis of Handwritten Text Documents for Human Resources Recruitment |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1081–1085 |
|
|
Keywords |
|
|
|
Abstract |
The use of graphology in recruitment processes has become a popular tool in many human resources companies. This paper presents a model that links features from handwritten images to a number of personality characteristics used to measure applicant aptitudes for the job in a particular hiring scenario. In particular we propose a model of measuring active personality and leadership of the writer. Graphological features that define such a profile are measured in terms of document and script attributes like layout configuration, letter size, shape, slant and skew angle of lines, etc. After the extraction, data is classified using a neural network. An experimental framework with real samples has been constructed to illustrate the performance of the approach. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ CFL2009 |
Serial |
1221 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Horst Bunke |


|
|
Title |
On the use of textural features for writer identification in old handwritten music scores |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
996 - 1000 |
|
|
Keywords |
|
|
|
Abstract |
Writer identification consists in determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores which uses only music notation to determine the author. The steps of the proposed system are the following. First of all, the music sheet is preprocessed for obtaining a music score without the staff lines. Afterwards, four different methods for generating texture images from music symbols are applied. Every approach uses a different spatial variation when combining the music symbols to generate the textures. Finally, Gabor filters and Grey-scale Co-ocurrence matrices are used to obtain the features. The classification is performed using a k-NN classifier based on Euclidean distance. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving encouraging identification rates. |
|
|
Address |
Barcelona |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FLS2009b |
Serial |
1223 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |


|
|
Title |
Seal detection and recognition: An approach for document indexing |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
101–105 |
|
|
Keywords |
|
|
|
Abstract |
Reliable indexing of documents having seal instances can be achieved by recognizing seal information. This paper presents a novel approach for detecting and classifying such multi-oriented seals in these documents. First, Hough Transform based methods are applied to extract the seal regions in documents. Next, isolated text characters within these regions are detected. Rotation and size invariant features and a support vector machine based classifier have been used to recognize these detected text characters. Next, for each pair of character, we encode their relative spatial organization using their distance and angular position with respect to the centre of the seal, and enter this code into a hash table. Given an input seal, we recognize the individual text characters and compute the code for pair-wise character based on the relative spatial organization. The code obtained from the input seal helps to retrieve model hypothesis from the hash table. The seal model to which we get maximum hypothesis is selected for the recognition of the input seal. The methodology is tested to index seal in rotation and size invariant environment and we obtained encouraging results. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPL2009b |
Serial |
1239 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados; Mathieu Nicolas Delalandre |


|
|
Title |
Multi-Oriented and Multi-Sized Touching Character Segmentation using Dynamic Programming |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
11–15 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region at the background portion. Using Convex Hull information, we use these background information to find some initial points to segment a touching string into possible primitive segments (a primitive segment consists of a single character or a part of a character). Next these primitive segments are merged to get optimum segmentation and dynamic programming is applied using total likelihood of characters as the objective function. SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Circular ring and convex hull ring based approach has been used along with angular information of the contour pixels of the character to make the feature rotation invariant. From the experiment, we obtained encouraging results. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPL2009a |
Serial |
1240 |
|
Permanent link to this record |
|
|
|
|
Author |
D. Perez; L. Tarazon; N. Serrano; F.M. Castro; Oriol Ramos Terrades; A. Juan |


|
|
Title |
The GERMANA Database |
Type |
Conference Article |
|
Year |
2009 |
Publication |
10th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
301-305 |
|
|
Keywords |
|
|
|
Abstract |
A new handwritten text database, GERMANA, is presented to facilitate empirical comparison of different approaches to text line extraction and off-line handwriting recognition. GERMANA is the result of digitising and annotating a 764-page Spanish manuscript from 1891, in which most pages only contain nearly calligraphed text written on ruled sheets of well-separated lines. To our knowledge, it is the first publicly available database for handwriting research, mostly written in Spanish and comparable in size to standard databases. Due to its sequential book structure, it is also well-suited for realistic assessment of interactive handwriting recognition systems. To provide baseline results for reference in future studies, empirical results are also reported, using standard techniques and tools for preprocessing, feature extraction, HMM-based image modelling, and language modelling. |
|
|
Address |
Barcelona; Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN  |
978-1-4244-4500-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ PTS2009 |
Serial |
1870 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Gemma Sanchez |


|
|
Title |
Analysis and Recognition of Music Scores |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
E |
Issue |
|
Pages |
749-774 |
|
|
Keywords |
|
|
|
Abstract |
The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-0-85729-860-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FoS2014 |
Serial |
2484 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Marçal Rusiñol |


|
|
Title |
Graphics Recognition Techniques |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
D |
Issue |
|
Pages |
489-521 |
|
|
Keywords |
Dimension recognition; Graphics recognition; Graphic-rich documents; Polygonal approximation; Raster-to-vector conversion; Texture-based primitive extraction; Text-graphics separation |
|
|
Abstract |
This chapter describes the most relevant approaches for the analysis of graphical documents. The graphics recognition pipeline can be splitted into three tasks. The low level or lexical task extracts the basic units composing the document. The syntactic level is focused on the structure, i.e., how graphical entities are constructed, and involves the location and classification of the symbols present in the document. The third level is a functional or semantic level, i.e., it models what the graphical symbols do and what they mean in the context where they appear. This chapter covers the lexical level, while the next two chapters are devoted to the syntactic and semantic level, respectively. The main problems reviewed in this chapter are raster-to-vector conversion (vectorization algorithms) and the separation of text and graphics components. The research and industrial communities have provided standard methods achieving reasonable performance levels. Hence, graphics recognition techniques can be considered to be in a mature state from a scientific point of view. Additionally this chapter provides insights on some related problems, namely, the extraction and recognition of dimensions in engineering drawings, and the recognition of hatched and tiled patterns. Both problems are usually associated, even integrated, in the vectorization process. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-0-85729-858-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LlR2014 |
Serial |
2380 |
|
Permanent link to this record |
|
|
|
|
Author |
Salvatore Tabbone; Oriol Ramos Terrades |


|
|
Title |
An Overview of Symbol Recognition |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Handbook of Document Image Processing and Recognition |
Abbreviated Journal |
|
|
|
Volume |
D |
Issue |
|
Pages |
523-551 |
|
|
Keywords |
Pattern recognition; Shape descriptors; Structural descriptors; Symbolrecognition; Symbol spotting |
|
|
Abstract |
According to the Cambridge Dictionaries Online, a symbol is a sign, shape, or object that is used to represent something else. Symbol recognition is a subfield of general pattern recognition problems that focuses on identifying, detecting, and recognizing symbols in technical drawings, maps, or miscellaneous documents such as logos and musical scores. This chapter aims at providing the reader an overview of the different existing ways of describing and recognizing symbols and how the field has evolved to attain a certain degree of maturity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
D. Doermann; K. Tombre |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN  |
978-0-85729-858-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TaT2014 |
Serial |
2489 |
|
Permanent link to this record |