toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Francisco Cruz; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title Handwritten Line Detection via an EM Algorithm Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages (down) 718-722  
  Keywords  
  Abstract In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CrT2013 Serial 2329  
Permanent link to this record
 

 
Author Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya edit   pdf
url  openurl
  Title Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance Type Conference Article
  Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 718-728  
  Keywords  
  Abstract The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBB2024 Serial 3986  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Sparse Radial Sampling LBP for Writer Identification Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages (down) 716-720  
  Keywords  
  Abstract In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ NBL2015 Serial 2692  
Permanent link to this record
 

 
Author Volkmar Frinken; Francisco Zamora; Salvador España; Maria Jose Castro; Andreas Fischer; Horst Bunke edit   pdf
isbn  openurl
  Title Long-Short Term Memory Neural Networks Language Modeling for Handwriting Recognition Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages (down) 701-704  
  Keywords  
  Abstract Unconstrained handwritten text recognition systems maximize the combination of two separate probability scores. The first one is the observation probability that indicates how well the returned word sequence matches the input image. The second score is the probability that reflects how likely a word sequence is according to a language model. Current state-of-the-art recognition systems use statistical language models in form of bigram word probabilities. This paper proposes to model the target language by means of a recurrent neural network with long-short term memory cells. Because the network is recurrent, the considered context is not limited to a fixed size especially as the memory cells are designed to deal with long-term dependencies. In a set of experiments conducted on the IAM off-line database we show the superiority of the proposed language model over statistical n-gram models.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FZE2012 Serial 2052  
Permanent link to this record
 

 
Author Pau Torras; Arnau Baro; Lei Kang; Alicia Fornes edit  openurl
  Title On the Integration of Language Models into Sequence to Sequence Architectures for Handwritten Music Recognition Type Conference Article
  Year 2021 Publication International Society for Music Information Retrieval Conference Abbreviated Journal  
  Volume Issue Pages (down) 690-696  
  Keywords  
  Abstract Despite the latest advances in Deep Learning, the recognition of handwritten music scores is still a challenging endeavour. Even though the recent Sequence to Sequence(Seq2Seq) architectures have demonstrated its capacity to reliably recognise handwritten text, their performance is still far from satisfactory when applied to historical handwritten scores. Indeed, the ambiguous nature of handwriting, the non-standard musical notation employed by composers of the time and the decaying state of old paper make these scores remarkably difficult to read, sometimes even by trained humans. Thus, in this work we explore the incorporation of language models into a Seq2Seq-based architecture to try to improve transcriptions where the aforementioned unclear writing produces statistically unsound mistakes, which as far as we know, has never been attempted for this field of research on this architecture. After studying various Language Model integration techniques, the experimental evaluation on historical handwritten music scores shows a significant improvement over the state of the art, showing that this is a promising research direction for dealing with such difficult manuscripts.  
  Address Virtual; November 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISMIR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ TBK2021 Serial 3616  
Permanent link to this record
 

 
Author Suman Ghosh; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title A Sliding Window Framework for Word Spotting Based on Word Attributes Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages (down) 652-661  
  Keywords Word spotting; Sliding window; Word attributes  
  Abstract In this paper we propose a segmentation-free approach to word spotting. Word images are first encoded into feature vectors using Fisher Vector. Then, these feature vectors are used together with pyramidal histogram of characters labels (PHOC) to learn SVM-based attribute models. Documents are represented by these PHOC based word attributes. To efficiently compute the word attributes over a sliding window, we propose to use an integral image representation of the document using a simplified version of the attribute model. Finally we re-rank the top word candidates using the more discriminative full version of the word attributes. We show state-of-the-art results for segmentation-free query-by-example word spotting in single-writer and multi-writer standard datasets.  
  Address Santiago de Compostela; June 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-19389-2 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GhV2015b Serial 2716  
Permanent link to this record
 

 
Author Robert Benavente; Gemma Sanchez; Ramon Baldrich; Maria Vanrell; Josep Llados edit  openurl
  Title Normalized colour segmentation for human appearance description. Type Conference Article
  Year 2000 Publication 15 th International Conference on Pattern Recognition Abbreviated Journal  
  Volume 3 Issue Pages (down) 637-641  
  Keywords  
  Abstract  
  Address Barcelona.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG;CIC Approved no  
  Call Number CAT @ cat @ BSB2000 Serial 223  
Permanent link to this record
 

 
Author Sophie Wuerger; Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas edit  doi
openurl 
  Title Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes Type Journal Article
  Year 2010 Publication Ophthalmic and Physiological Optics Abbreviated Journal OPO  
  Volume 30 Issue 5 Pages (down) 635-659  
  Keywords  
  Abstract The purpose of this study was to assess whether age-related chromatic sensitivity changes are associated with corresponding changes in hue perception in a large sample of colour-normal observers over a wide age range (n = 185; age range: 18-75 years). In these observers we determined both the sensitivity along the protan, deutan and tritan line; and settings for the four unique hues, from which the characteristics of the higher-order colour mechanisms can be derived. We found a significant decrease in chromatic sensitivity due to ageing, in particular along the tritan line. From the unique hue settings we derived the cone weightings associated with the colour mechanisms that are at equilibrium for the four unique hues. We found that the relative cone weightings (w(L) /w(M) and w(L) /w(S)) associated with the unique hues were independent of age. Our results are consistent with previous findings that the unique hues are rather constant with age while chromatic sensitivity declines. They also provide evidence in favour of the hypothesis that higher-order colour mechanisms are equipped with flexible cone weightings, as opposed to fixed weights. The mechanism underlying this compensation is still poorly understood.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IF: 1.259 Approved no  
  Call Number Admin @ si @ WXF2010 Serial 1826  
Permanent link to this record
 

 
Author Ruben Tito; Minesh Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  openurl
  Title ICDAR 2021 Competition on Document Visual Question Answering Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages (down) 635-649  
  Keywords  
  Abstract In this report we present results of the ICDAR 2021 edition of the Document Visual Question Challenges. This edition complements the previous tasks on Single Document VQA and Document Collection VQA with a newly introduced on Infographics VQA. Infographics VQA is based on a new dataset of more than 5, 000 infographics images and 30, 000 question-answer pairs. The winner methods have scored 0.6120 ANLS in Infographics VQA task, 0.7743 ANLSL in Document Collection VQA task and 0.8705 ANLS in Single Document VQA. We present a summary of the datasets used for each task, description of each of the submitted methods and the results and analysis of their performance. A summary of the progress made on Single Document VQA since the first edition of the DocVQA 2020 challenge is also presented.  
  Address VIRTUAL; Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ TMJ2021 Serial 3624  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados edit  url
doi  isbn
openurl 
  Title A Symbol-dependent Writer Identifcation Approach in Old Handwritten Music Scores Type Conference Article
  Year 2010 Publication 12th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages (down) 634 - 639  
  Keywords  
  Abstract Writer identification consists in determining the writer of a piece of handwriting from a set of writers. In this paper we introduce a symbol-dependent approach for identifying the writer of old music scores, which is based on two symbol recognition methods. The main idea is to use the Blurred Shape Model descriptor and a DTW-based method for detecting, recognizing and describing the music clefs and notes. The proposed approach has been evaluated in a database of old music scores, achieving very high writer identification rates.  
  Address Kolkata (India)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4244-8353-2 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FoL2010 Serial 1321  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: