|
Records |
Links |
|
Author |
Agnes Borras; Josep Llados |


|
|
Title |
Object Image Retrieval by Shape Content in Complex Scenes Using Geometric Constraints |
Type |
Book Chapter |
|
Year |
2005 |
Publication |
Pattern Recognition And Image Analysis |
Abbreviated Journal |
LNCS |
|
|
Volume |
3522 |
Issue |
|
Pages  |
325–332 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents an image retrieval system based on 2D shape information. Query shape objects and database images are repre- sented by polygonal approximations of their contours. Afterwards they are encoded, using geometric features, in terms of predefined structures. Shapes are then located in database images by a voting procedure on the spatial domain. Then an alignment matching provides a probability value to rank de database image in the retrieval result. The method al- lows to detect a query object in database images even when they contain complex scenes. Also the shape matching tolerates partial occlusions and affine transformations as translation, rotation or scaling. |
|
|
Address |
Estoril (Portugal) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Link |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; |
Approved |
no |
|
|
Call Number |
DAG @ dag @ BoL2005; IAM @ iam @ BoL2005 |
Serial |
556 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Philippe Dosch; Alicia Fornes |

|
|
Title |
Report on the Third Contest on Symbol Recognition |
Type |
Book Chapter |
|
Year |
2008 |
Publication |
Graphics Recognition: Recent Advances and New Opportunities |
Abbreviated Journal |
|
|
|
Volume |
5046 |
Issue |
|
Pages  |
321–328 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
W. Liu, J. Llados, J.M. Ogier |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ VDF2008 |
Serial |
986 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados; Gemma Sanchez |

|
|
Title |
Symbol Spotting in Vectorized Technical Drawings Through a Lookup Table of Region Strings |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Analysis and Applications |
Abbreviated Journal |
PAA |
|
|
Volume |
13 |
Issue |
3 |
Pages  |
321-331 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we address the problem of symbol spotting in technical document images applied to scanned and vectorized line drawings. Like any information spotting architecture, our approach has two components. First, symbols are decomposed in primitives which are compactly represented and second a primitive indexing structure aims to efficiently retrieve similar primitives. Primitives are encoded in terms of attributed strings representing closed regions. Similar strings are clustered in a lookup table so that the set median strings act as indexing keys. A voting scheme formulates hypothesis in certain locations of the line drawing image where there is a high presence of regions similar to the queried ones, and therefore, a high probability to find the queried graphical symbol. The proposed approach is illustrated in a framework consisting in spotting furniture symbols in architectural drawings. It has been proved to work even in the presence of noise and distortion introduced by the scanning and raster-to-vector processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7541 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RLS2010 |
Serial |
1165 |
|
Permanent link to this record |
|
|
|
|
Author |
Kaida Xiao; Sophie Wuerger; Chenyang Fu; Dimosthenis Karatzas |

|
|
Title |
Unique Hue Data for Colour Appearance Models. Part i: Loci of Unique Hues and Hue Uniformity |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Color Research & Application |
Abbreviated Journal |
CRA |
|
|
Volume |
36 |
Issue |
5 |
Pages  |
316-323 |
|
|
Keywords |
unique hues; colour appearance models; CIECAM02; hue uniformity |
|
|
Abstract |
Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour-normal observers (n 1⁄4 185). These data were then used to evaluate the most commonly used colour appear- ance model, CIECAM02, by transforming the CIEXYZ tris- timulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is im- portant. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Wiley Periodicals Inc |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ XWF2011 |
Serial |
1816 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |

|
|
Title |
Multi-oriented English Text Line Extraction using Background and Foreground Information |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proceedings of the 8th IAPR International Workshop on Document Analysis Systems, |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
315–322 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Nara (Japo) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPL2008b |
Serial |
1047 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz; Oriol Ramos Terrades |


|
|
Title |
EM-Based Layout Analysis Method for Structured Documents |
Type |
Conference Article |
|
Year |
2014 |
Publication |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
315-320 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according
to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 602.006; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CrR2014 |
Serial |
2530 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Dimosthenis Karatzas; Ricardo Toledo; Josep Llados |


|
|
Title |
Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content. Advances in Information Retrieval |
Type |
Conference Article |
|
Year |
2011 |
Publication |
33rd European Conference on Information Retrieval |
Abbreviated Journal |
|
|
|
Volume |
6611 |
Issue |
|
Pages  |
314-325 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an efficient queried-by-example retrieval system which is able to retrieve trademark images by similarity from patent and trademark offices' digital libraries. Logo images are described by both their semantic content, by means of the Vienna codes, and their visual contents, by using shape and color as visual cues. The trademark descriptors are then indexed by a locality-sensitive hashing data structure aiming to perform approximate k-NN search in high dimensional spaces in sub-linear time. The resulting ranked lists are combined by using the Condorcet method and a relevance feedback step helps to iteratively revise the query and refine the obtained results. The experiments demonstrate the effectiveness and efficiency of this system on a realistic and large dataset. |
|
|
Address |
Dublin, Ireland |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
Berlin |
Editor |
P. Clough; C. Foley; C. Gurrin; G.J.F. Jones; W. Kraaij; H. Lee; V. Murdoch |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-20160-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECIR |
|
|
Notes |
DAG; RV;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAK2011 |
Serial |
1737 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Andreas Fischer; Horst Bunke; Alicia Fornes |

|
|
Title |
Co-training for Handwritten Word Recognition |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
314-318 |
|
|
Keywords |
|
|
|
Abstract |
To cope with the tremendous variations of writing styles encountered between different individuals, unconstrained automatic handwriting recognition systems need to be trained on large sets of labeled data. Traditionally, the training data has to be labeled manually, which is a laborious and costly process. Semi-supervised learning techniques offer methods to utilize unlabeled data, which can be obtained cheaply in large amounts in order, to reduce the need for labeled data. In this paper, we propose the use of Co-Training for improving the recognition accuracy of two weakly trained handwriting recognition systems. The first one is based on Recurrent Neural Networks while the second one is based on Hidden Markov Models. On the IAM off-line handwriting database we demonstrate a significant increase of the recognition accuracy can be achieved with Co-Training for single word recognition. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFB2011 |
Serial |
1789 |
|
Permanent link to this record |
|
|
|
|
Author |
Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal |

|
|
Title |
SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation |
Type |
Conference Article |
|
Year |
2023 |
Publication |
17th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
14187 |
Issue |
|
Pages  |
307–325 |
|
|
Keywords |
|
|
|
Abstract |
Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of 93.72, 54.39, 84.65 and 98.04 respectively under one billion parameters. The code is made publicly available at: github.com/ayanban011/SwinDocSegmenter . |
|
|
Address |
San Jose; CA; USA; August 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ BBL2023 |
Serial |
3893 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |


|
|
Title |
Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages  |
306-320 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MRG2021b |
Serial |
3571 |
|
Permanent link to this record |