toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Fernandez; Josep Llados; Alicia Fornes edit  doi
isbn  openurl
  Title Handwritten Word Spotting in Old Manuscript Images Using a Pseudo-Structural Descriptor Organized in a Hash Structure Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 628-635  
  Keywords  
  Abstract There are lots of historical handwritten documents with information that can be used for several studies and projects. The Document Image Analysis and Recognition community is interested in preserving these documents and extracting all the valuable information from them. Handwritten word-spotting is the pattern classification task which consists in detecting handwriting word images. In this work, we have used a query-by-example formalism: we have matched an input image with one or multiple images from handwritten documents to determine the distance that might indicate a correspondence. We have developed an approach based in characteristic Loci Features stored in a hash structure. Document images of the marriage licences of the Cathedral of Barcelona are used as the benchmarking database.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down) Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ FLF2011 Serial 1742  
Permanent link to this record
 

 
Author Jean-Marc Ogier; Wenyin Liu; Josep Llados (eds) edit  isbn
openurl 
  Title Graphics Recognition: Achievements, Challenges, and Evolution Type Book Whole
  Year 2010 Publication 8th International Workshop GREC 2009. Abbreviated Journal  
  Volume 6020 Issue Pages  
  Keywords  
  Abstract  
  Address La Rochelle  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor (down) Jean-Marc Ogier; Wenyin Liu; Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ OLL2010 Serial 1976  
Permanent link to this record
 

 
Author Partha Pratim Roy; Eduard Vazquez; Josep Llados; Ramon Baldrich; Umapada Pal edit  openurl
  Title A System to Retrieve Text/Symbols from Color Maps using Connected Component and Skeleton Analysis Type Conference Article
  Year 2007 Publication Seventh IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 79–78  
  Keywords  
  Abstract  
  Address Curitiba (Brasil)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down) J. Llados, W. Liu, J.M. Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes CAT; DAG;CIC Approved no  
  Call Number CAT @ cat @ RVL2007 Serial 836  
Permanent link to this record
 

 
Author Joan Mas; J.A. Jorge; Gemma Sanchez; Josep Llados edit  openurl
  Title Describing and Parising Hand-Drawn Sketches using a Syntactic Approach Type Conference Article
  Year 2007 Publication Seventh IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 61–62  
  Keywords  
  Abstract  
  Address Curitiba (Brasil)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down) J. Llados, W. Liu, J.M. Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ MJS2007 Serial 845  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  openurl
  Title A Region-Based Hashing Approach for Symbol Spotting in Thechnical Documents Type Conference Article
  Year 2007 Publication Seventh IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 41–42  
  Keywords  
  Abstract  
  Address Curitiba (Brazil)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down) J. Llados, W. Liu, J.M. Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RuL2007a Serial 846  
Permanent link to this record
 

 
Author Josep Llados edit  isbn
openurl 
  Title Computer Vision: Progress of Research and Development Type Book Whole
  Year 2006 Publication 1st CVC Internal Workshop Computer Vision: Progress of Research and Development, Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down) J. Llados (ed.),  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-8-9 Medium  
  Area Expedition Conference CVCRD  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Lla2006b Serial 766  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny edit  doi
isbn  openurl
  Title Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. Type Conference Article
  Year 2010 Publication 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition Abbreviated Journal  
  Volume 6218 Issue Pages 223–232  
  Keywords  
  Abstract Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor (down) In E.R. Hancock, R.C. Wilson, T. Windeatt, I. Ulusoy and F. Escolano,  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-14979-5 Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ GiV2010 Serial 1416  
Permanent link to this record
 

 
Author Joan Mas edit  isbn
openurl 
  Title A Syntactic Pattern Recognition Approach based on a Distribution Tolerant Adjacency Grammar and a Spatial Indexed Parser. Application to Sketched Document Recognition Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sketch recognition is a discipline which has gained an increasing interest in the last
20 years. This is due to the appearance of new devices such as PDA, Tablet PC’s
or digital pen & paper protocols. From the wide range of sketched documents we
focus on those that represent structured documents such as: architectural floor-plans,
engineering drawing, UML diagrams, etc. To recognize and understand these kinds
of documents, first we have to recognize the different compounding symbols and then
we have to identify the relations between these elements. From the way that a sketch
is captured, there are two categories: on-line and off-line. On-line input modes refer
to draw directly on a PDA or a Tablet PC’s while off-line input modes refer to scan
a previously drawn sketch.
This thesis is an overlapping of three different areas on Computer Science: Pattern
Recognition, Document Analysis and Human-Computer Interaction. The aim of this
thesis is to interpret sketched documents independently on whether they are captured
on-line or off-line. For this reason, the proposed approach should contain the following
features. First, as we are working with sketches the elements present in our input
contain distortions. Second, as we would work in on-line or off-line input modes, the
order in the input of the primitives is indifferent. Finally, the proposed method should
be applied in real scenarios, its response time must be slow.
To interpret a sketched document we propose a syntactic approach. A syntactic
approach is composed of two correlated components: a grammar and a parser. The
grammar allows describing the different elements on the document as well as their
relations. The parser, given a document checks whether it belongs to the language
generated by the grammar or not. Thus, the grammar should be able to cope with
the distortions appearing on the instances of the elements. Moreover, it would be
necessary to define a symbol independently of the order of their primitives. Concerning to the parser when analyzing 2D sentences, it does not assume an order in the
primitives. Then, at each new primitive in the input, the parser searches among the
previous analyzed symbols candidates to produce a valid reduction.
Taking into account these features, we have proposed a grammar based on Adjacency Grammars. This kind of grammars defines their productions as a multiset
of symbols rather than a list. This allows describing a symbol without an order in
their components. To cope with distortion we have proposed a distortion model.
This distortion model is an attributed estimated over the constraints of the grammar and passed through the productions. This measure gives an idea on how far is the
symbol from its ideal model. In addition to the distortion on the constraints other
distortions appear when working with sketches. These distortions are: overtracing,
overlapping, gaps or spurious strokes. Some grammatical productions have been defined to cope with these errors. Concerning the recognition, we have proposed an
incremental parser with an indexation mechanism. Incremental parsers analyze the
input symbol by symbol given a response to the user when a primitive is analyzed.
This makes incremental parser suitable to work in on-line as well as off-line input
modes. The parser has been adapted with an indexation mechanism based on a spatial division. This indexation mechanism allows setting the primitives in the space
and reducing the search to a neighbourhood.
A third contribution is a grammatical inference algorithm. This method given a
set of symbols captures the production describing it. In the field of formal languages,
different approaches has been proposed but in the graphical domain not so much work
is done in this field. The proposed method is able to capture the production from
a set of symbol although they are drawn in different order. A matching step based
on the Haussdorff distance and the Hungarian method has been proposed to match
the primitives of the different symbols. In addition the proposed approach is able to
capture the variability in the parameters of the constraints.
From the experimental results, we may conclude that we have proposed a robust
approach to describe and recognize sketches. Moreover, the addition of new symbols
to the alphabet is not restricted to an expert. Finally, the proposed approach has
been used in two real scenarios obtaining a good performance.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor (down) Gemma Sanchez;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-4-0 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Mas2010 Serial 1334  
Permanent link to this record
 

 
Author Lluis Pere de las Heras edit  isbn
openurl 
  Title Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Di erent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very speci c problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on di erent data and on di erent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at di erent levels that are designed from a generic perspective. Firstly, we introduce three di erent strategies for the detection of symbols. The fi rst method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The fi rst one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological de nition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor (down) Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-8-8 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Her2014 Serial 2574  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
  Title Document Image Representation, Classification and Retrieval in Large-Scale Domains Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.

Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.

Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiple-page documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing large-scale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor (down) Ernest Valveny;Florent Perronnin  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gor2013 Serial 2277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: