toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Chenyang Fu; Kaida Xiao; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title Investigation of Unique Hue Setting Changes with Ageing Type Journal Article
  Year 2011 Publication Chinese Optics Letters Abbreviated Journal COL  
  Volume 9 Issue 5 Pages 053301-1-5  
  Keywords  
  Abstract Clromatic sensitivity along the protan, deutan, and tritan lines and the loci of the unique hues (red, green, yellow, blue) for a very large sample (n = 185) of colour-normal observers ranging from 18 to 75 years of age are assessed. Visual judgments are obtained under normal viewing conditions using colour patches on self-luminous display under controlled adaptation conditions. Trivector discrimination thresholds show an increase as a function of age along the protan, deutan, and tritan axes, with the largest increase present along the tritan line, less pronounced shifts in unique hue settings are also observed. Based on the chromatic (protan, deutan, tritan) thresholds and using scaled cone signals, we predict the unique hue changes with ageing. A dependency on age for unique red and unique yellow for predicted hue angle is found. We conclude that the chromatic sensitivity deteriorates significantly with age, whereas the appearance of unique hues is much less affected, remaining almost constant despite the known changes in the ocular media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ XFW2011 Serial 1818  
Permanent link to this record
 

 
Author Kaida Xiao; Sophie Wuerger; Chenyang Fu; Dimosthenis Karatzas edit  doi
openurl 
  Title Unique Hue Data for Colour Appearance Models. Part i: Loci of Unique Hues and Hue Uniformity Type Journal Article
  Year 2011 Publication Color Research & Application Abbreviated Journal CRA  
  Volume 36 Issue 5 Pages 316-323  
  Keywords unique hues; colour appearance models; CIECAM02; hue uniformity  
  Abstract Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour-normal observers (n 1⁄4 185). These data were then used to evaluate the most commonly used colour appear- ance model, CIECAM02, by transforming the CIEXYZ tris- timulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is im- portant. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Periodicals Inc Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ XWF2011 Serial 1816  
Permanent link to this record
 

 
Author ChunYang; Xu Cheng Yin; Hong Yu; Dimosthenis Karatzas; Yu Cao edit  doi
isbn  openurl
  Title ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT) Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1444-1447  
  Keywords  
  Abstract Hundreds of millions of figures are available in the biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information and understanding biomedical documents. Unlike images in the open domain, biomedical figures present a variety of unique challenges. For example, biomedical figures typically have complex layouts, small font sizes, short text, specific text, complex symbols and irregular text arrangements. This paper presents the final results of the ICDAR 2017 Competition on Text Extraction from Biomedical Literature Figures (ICDAR2017 DeTEXT Competition), which aims at extracting (detecting and recognizing) text from biomedical literature figures. Similar to text extraction from scene images and web pictures, ICDAR2017 DeTEXT Competition includes three major tasks, i.e., text detection, cropped word recognition and end-to-end text recognition. Here, we describe in detail the data set, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-3586-5 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number (up) Admin @ si @ YCY2017 Serial 3098  
Permanent link to this record
 

 
Author Wenwen Yu; Mingyu Liu; Mingrui Chen; Ning Lu; Yinlong We; Yuliang Liu; Dimosthenis Karatzas; Xiang Bai edit  url
openurl 
  Title ICDAR 2023 Competition on Reading the Seal Title Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 522–535  
  Keywords  
  Abstract Reading seal title text is a challenging task due to the variable shapes of seals, curved text, background noise, and overlapped text. However, this important element is commonly found in official and financial scenarios, and has not received the attention it deserves in the field of OCR technology. To promote research in this area, we organized ICDAR 2023 competition on reading the seal title (ReST), which included two tasks: seal title text detection (Task 1) and end-to-end seal title recognition (Task 2). We constructed a dataset of 10,000 real seal data, covering the most common classes of seals, and labeled all seal title texts with text polygons and text contents. The competition opened on 30th December, 2022 and closed on 20th March, 2023. The competition attracted 53 participants and received 135 submissions from academia and industry, including 28 participants and 72 submissions for Task 1, and 25 participants and 63 submissions for Task 2, which demonstrated significant interest in this challenging task. In this report, we present an overview of the competition, including the organization, challenges, and results. We describe the dataset and tasks, and summarize the submissions and evaluation results. The results show that significant progress has been made in the field of seal title text reading, and we hope that this competition will inspire further research and development in this important area of OCR technology.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ YLC2023 Serial 3897  
Permanent link to this record
 

 
Author Wenwen Yu; Chengquan Zhang; Haoyu Cao; Wei Hua; Bohan Li; Huang Chen; Mingyu Liu; Mingrui Chen; Jianfeng Kuang; Mengjun Cheng; Yuning Du; Shikun Feng; Xiaoguang Hu; Pengyuan Lyu; Kun Yao; Yuechen Yu; Yuliang Liu; Wanxiang Che; Errui Ding; Cheng-Lin Liu; Jiebo Luo; Shuicheng Yan; Min Zhang; Dimosthenis Karatzas; Xing Sun; Jingdong Wang; Xiang Bai edit  url
openurl 
  Title ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich Document Images Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 536–552  
  Keywords  
  Abstract Structured text extraction is one of the most valuable and challenging application directions in the field of Document AI. However, the scenarios of past benchmarks are limited, and the corresponding evaluation protocols usually focus on the submodules of the structured text extraction scheme. In order to eliminate these problems, we organized the ICDAR 2023 competition on Structured text extraction from Visually-Rich Document images (SVRD). We set up two tracks for SVRD including Track 1: HUST-CELL and Track 2: Baidu-FEST, where HUST-CELL aims to evaluate the end-to-end performance of Complex Entity Linking and Labeling, and Baidu-FEST focuses on evaluating the performance and generalization of Zero-shot/Few-shot Structured Text extraction from an end-to-end perspective. Compared to the current document benchmarks, our two tracks of competition benchmark enriches the scenarios greatly and contains more than 50 types of visually-rich document images (mainly from the actual enterprise applications). The competition opened on 30th December, 2022 and closed on 24th March, 2023. There are 35 participants and 91 valid submissions received for Track 1, and 15 participants and 26 valid submissions received for Track 2. In this report we will presents the motivation, competition datasets, task definition, evaluation protocol, and submission summaries. According to the performance of the submissions, we believe there is still a large gap on the expected information extraction performance for complex and zero-shot scenarios. It is hoped that this competition will attract many researchers in the field of CV and NLP, and bring some new thoughts to the field of Document AI.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ YZC2023 Serial 3896  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke edit  doi
isbn  openurl
  Title Multiple Classifiers for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 10th International Conference on Multiple Classifier Systems Abbreviated Journal  
  Volume 6713 Issue Pages 36-45  
  Keywords  
  Abstract During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.  
  Address Napoles, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Carlo Sansone; Josef Kittler; Fabio Roli  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21556-8 Medium  
  Area Expedition Conference MCS  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @GVR2011 Serial 1745  
Permanent link to this record
 

 
Author Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño edit   pdf
openurl 
  Title Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project Type Conference Article
  Year 2016 Publication 3rd IberSPEECH Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
 
  Address Lisboa; Portugal; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IberSPEECH  
  Notes DAG; MV; 600.097;SIAI Approved no  
  Call Number (up) Admin @ si @MLF2016 Serial 2813  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Alejandro Hector Toselli; Nicolas Serrano; Veronica Romero; Enrique Vidal; Alfons Juan edit  doi
openurl 
  Title Interactive layout analysis and transcription systems for historic handwritten documents Type Conference Article
  Year 2010 Publication 10th ACM Symposium on Document Engineering Abbreviated Journal  
  Volume Issue Pages 219–222  
  Keywords Handwriting recognition; Interactive predictive processing; Partial supervision; Interactive layout analysis  
  Abstract The amount of digitized legacy documents has been rising dramatically over the last years due mainly to the increasing number of on-line digital libraries publishing this kind of documents, waiting to be classified and finally transcribed into a textual electronic format (such as ASCII or PDF). Nevertheless, most of the available fully-automatic applications addressing this task are far from being perfect and heavy and inefficient human intervention is often required to check and correct the results of such systems. In contrast, multimodal interactive-predictive approaches may allow the users to participate in the process helping the system to improve the overall performance. With this in mind, two sets of recent advances are introduced in this work: a novel interactive method for text block detection and two multimodal interactive handwritten text transcription systems which use active learning and interactive-predictive technologies in the recognition process.  
  Address Manchester, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACM  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @RTS2010 Serial 1857  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas edit  openurl
  Title The Library Living Lab Type Conference Article
  Year 2015 Publication Open Living Lab Days Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Istanbul; Turkey; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference OLLD  
  Notes MV; DAG;SIAI Approved no  
  Call Number (up) Admin @ si @ViK2015 Serial 2797  
Permanent link to this record
 

 
Author Fernando Vilariño; Dimosthenis Karatzas edit  openurl
  Title A Living Lab approach for Citizen Science in Libraries Type Conference Article
  Year 2016 Publication 1st International ECSA Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Berlin; Germany; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECSA  
  Notes MV; DAG; 600.084; 600.097;SIAI Approved no  
  Call Number (up) Admin @ si @ViK2016 Serial 2804  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: