|
Records |
Links |
|
Author |
Sounak Dey; Anjan Dutta; Juan Ignacio Toledo; Suman Ghosh; Josep Llados; Umapada Pal |


|
|
Title |
SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification |
Type |
Miscellaneous |
|
Year |
2018 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might often resembles the real signature with small deformation. This verification task is even harder in writer independent scenarios which is undeniably fiscal for realistic cases. In this paper, we model an offline writer independent signature verification task with a convolutional Siamese network. Siamese networks are twin networks with shared weights, which can be trained to learn a feature space where similar observations are placed in proximity. This is achieved by exposing the network to a pair of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. Experiments conducted on cross-domain datasets emphasize the capability of our network to model forgery in different languages (scripts) and handwriting styles. Moreover, our designed Siamese network, named SigNet, exceeds the state-of-the-art results on most of the benchmark signature datasets, which paves the way for further research in this direction. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DDT2018 |
Serial |
3085 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anjan Dutta; Josep Llados; Alicia Fornes; Umapada Pal |


|
|
Title |
Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
31-32 |
|
|
Keywords |
|
|
|
Abstract |
One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DDL2017 |
Serial |
3057 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anjan Dutta; Suman Ghosh; Ernest Valveny; Josep Llados; Umapada Pal |


|
|
Title |
Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch |
Type |
Conference Article |
|
Year |
2018 |
Publication |
24th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
916 - 921 |
|
|
Keywords |
|
|
|
Abstract |
In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets. |
|
|
Address |
Beijing; China; August 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 602.167; 602.168; 600.097; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DDG2018b |
Serial |
3152 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anjan Dutta; Suman Ghosh; Ernest Valveny; Josep Llados |

|
|
Title |
Aligning Salient Objects to Queries: A Multi-modal and Multi-object Image Retrieval Framework |
Type |
Conference Article |
|
Year |
2018 |
Publication |
14th Asian Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. Our architecture also relies on a salient object detection through a supervised LSTM-based visual attention model learned from convolutional features. Both the alignment between the queries and the image and the supervision of the attention on the images are obtained by generalizing the Hungarian Algorithm using different loss functions. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set. We validate the performance of our approach on standard single/multi-object datasets, showing state-of-the art performance in every dataset. |
|
|
Address |
Perth; Australia; December 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ACCV |
|
|
Notes |
DAG; 600.097; 600.121; 600.129 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DDG2018a |
Serial |
3151 |
|
Permanent link to this record |
|
|
|
|
Author |
Ilke Demir; Dena Bazazian; Adriana Romero; Viktoriia Sharmanska; Lyne P. Tchapmi |


|
|
Title |
WiCV 2018: The Fourth Women In Computer Vision Workshop |
Type |
Conference Article |
|
Year |
2018 |
Publication |
4th Women in Computer Vision Workshop |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1941-19412 |
|
|
Keywords |
Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning |
|
|
Abstract |
We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations. |
|
|
Address |
Salt Lake City; USA; June 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WiCV |
|
|
Notes |
DAG; 600.121; 600.129;MILAB |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DBR2018 |
Serial |
3222 |
|
Permanent link to this record |
|
|
|
|
Author |
Alloy Das; Sanket Biswas; Umapada Pal; Josep Llados |


|
|
Title |
Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes |
Type |
Conference Article |
|
Year |
2024 |
Publication |
IEEE International Conference on Robotics and Automation in PACIFICO |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance. |
|
|
Address |
Yokohama; Japan; May 2024 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICRA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DBP2024 |
Serial |
3979 |
|
Permanent link to this record |
|
|
|
|
Author |
Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya |


|
|
Title |
Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance |
Type |
Conference Article |
|
Year |
2024 |
Publication |
Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
718-728 |
|
|
Keywords |
|
|
|
Abstract |
The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency. |
|
|
Address |
Waikoloa; Hawai; USA; January 2024 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ DBB2024 |
Serial |
3986 |
|
Permanent link to this record |
|
|
|
|
Author |
Manuel Carbonell; Mauricio Villegas; Alicia Fornes; Josep Llados |

|
|
Title |
Joint Recognition of Handwritten Text and Named Entities with a Neural End-to-end Model |
Type |
Conference Article |
|
Year |
2018 |
Publication |
13th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
399-404 |
|
|
Keywords |
Named entity recognition; Handwritten Text Recognition; neural networks |
|
|
Abstract |
When extracting information from handwritten documents, text transcription and named entity recognition are usually faced as separate subsequent tasks. This has the disadvantage that errors in the first module affect heavily the
performance of the second module. In this work we propose to do both tasks jointly, using a single neural network with a common architecture used for plain text recognition. Experimentally, the work has been tested on a collection of historical marriage records. Results of experiments are presented to show the effect on the performance for different
configurations: different ways of encoding the information, doing or not transfer learning and processing at text line or multi-line region level. The results are comparable to state of the art reported in the ICDAR 2017 Information Extraction competition, even though the proposed technique does not use any dictionaries, language modeling or post processing. |
|
|
Address |
Vienna; Austria; April 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.097; 603.057; 601.311; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ CVF2018 |
Serial |
3170 |
|
Permanent link to this record |
|
|
|
|
Author |
H. Chouaib; Salvatore Tabbone; Oriol Ramos Terrades; F. Cloppet; N. Vincent; A.T. Thierry Paquet |

|
|
Title |
Sélection de Caractéristiques à partir d'un algorithme génétique et d'une combinaison de classifieurs Adaboost |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Colloque International Francophone sur l'Ecrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
181-186 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Rouen, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ CTR2008 |
Serial |
1874 |
|
Permanent link to this record |
|
|
|
|
Author |
Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi |

|
|
Title |
Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images |
Type |
Conference Article |
|
Year |
2021 |
Publication |
4th International Conference on Historical Cryptology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
34-37 |
|
|
Keywords |
|
|
|
Abstract |
Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering. |
|
|
Address |
Virtual; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
HistoCrypt |
|
|
Notes |
DAG; 602.230; 600.140; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ CSF2021 |
Serial |
3617 |
|
Permanent link to this record |