|
Records |
Links |
|
Author |
Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
Automatic Verification of Properly Signed Multi-page Document Images |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Proceedings of the Eleventh International Symposium on Visual Computing |
Abbreviated Journal |
|
|
|
Volume |
9475 |
Issue |
|
Pages |
327-336 |
|
|
Keywords |
Document Image; Manual Inspection; Signature Verification; Rejection Criterion; Document Flow |
|
|
Abstract |
In this paper we present an industrial application for the automatic screening of incoming multi-page documents in a banking workflow aimed at determining whether these documents are properly signed or not. The proposed method is divided in three main steps. First individual pages are classified in order to identify the pages that should contain a signature. In a second step, we segment within those key pages the location where the signatures should appear. The last step checks whether the signatures are present or not. Our method is tested in a real large-scale environment and we report the results when checking two different types of real multi-page contracts, having in total more than 14,500 pages. |
|
|
Address |
Las Vegas, Nevada, USA; December 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
9475 |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISVC |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3189 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) |
|
|
Title |
16th International Conference, 2021, Proceedings, Part III |
Type |
Book Whole |
|
Year |
2021 |
Publication |
Document Analysis and Recognition – ICDAR 2021 |
Abbreviated Journal |
|
|
|
Volume |
12823 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding. |
|
|
Address |
Lausanne, Switzerland, September 5-10, 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Cham |
Place of Publication |
|
Editor |
Josep Llados; Daniel Lopresti; Seiichi Uchida |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-030-86333-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3727 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) |
|
|
Title |
16th International Conference, 2021, Proceedings, Part IV |
Type |
Book Whole |
|
Year |
2021 |
Publication |
Document Analysis and Recognition – ICDAR 2021 |
Abbreviated Journal |
|
|
|
Volume |
12824 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding. |
|
|
Address |
Lausanne, Switzerland, September 5-10, 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Cham |
Place of Publication |
|
Editor |
Josep Llados; Daniel Lopresti; Seiichi Uchida |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-030-86336-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3728 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) |
|
|
Title |
16th International Conference, 2021, Proceedings, Part I |
Type |
Book Whole |
|
Year |
2021 |
Publication |
Document Analysis and Recognition – ICDAR 2021 |
Abbreviated Journal |
|
|
|
Volume |
12821 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition. |
|
|
Address |
Lausanne, Switzerland, September 5-10, 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Cham |
Place of Publication |
|
Editor |
Josep Llados; Daniel Lopresti; Seiichi Uchida |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-030-86548-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3725 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) |
|
|
Title |
16th International Conference, 2021, Proceedings, Part II |
Type |
Book Whole |
|
Year |
2021 |
Publication |
Document Analysis and Recognition – ICDAR 2021 |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding. |
|
|
Address |
Lausanne, Switzerland, September 5-10, 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Cham |
Place of Publication |
|
Editor |
Josep Llados; Daniel Lopresti; Seiichi Uchida |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-030-86330-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3726 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
306-320 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MRG2021b |
Serial |
3571 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
381–395 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RMG2021 |
Serial |
3572 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |
|
|
Title |
DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12823 |
Issue |
|
Pages |
555–568 |
|
|
Keywords |
|
|
|
Abstract |
Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021a |
Serial |
3573 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
A Self-supervised Inverse Graphics Approach for Sketch Parametrization |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12916 |
Issue |
|
Pages |
28-42 |
|
|
Keywords |
|
|
|
Abstract |
The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SRR2021 |
Serial |
3675 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |
|
|
Title |
Graph-Based Deep Generative Modelling for Document Layout Generation |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12917 |
Issue |
|
Pages |
525-537 |
|
|
Keywords |
|
|
|
Abstract |
One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021 |
Serial |
3676 |
|
Permanent link to this record |