|
Records |
Links |
|
Author |
Y. Patel; Lluis Gomez; Raul Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar |

|
|
Title |
TextTopicNet-Self-Supervised Learning of Visual Features Through Embedding Images on Semantic Text Spaces |
Type |
Miscellaneous |
|
Year |
2018 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The immense success of deep learning based methods in computer vision heavily relies on large scale training datasets. These richly annotated datasets help the network learn discriminative visual features. Collecting and annotating such datasets requires a tremendous amount of human effort and annotations are limited to popular set of classes. As an alternative, learning visual features by designing auxiliary tasks which make use of freely available self-supervision has become increasingly popular in the computer vision community.
In this paper, we put forward an idea to take advantage of multi-modal context to provide self-supervision for the training of computer vision algorithms. We show that adequate visual features can be learned efficiently by training a CNN to predict the semantic textual context in which a particular image is more probable to appear as an illustration. More specifically we use popular text embedding techniques to provide the self-supervision for the training of deep CNN. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGG2018 |
Serial |
3177 |
|
Permanent link to this record |
|
|
|
|
Author |
Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas |


|
|
Title |
Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings |
Type |
Conference Article |
|
Year |
2018 |
Publication |
International Workshop on Reproducible Research in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
11455 |
Issue |
|
Pages |
71-82 |
|
|
Keywords |
|
|
|
Abstract |
Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ NDC2018 |
Serial |
3178 |
|
Permanent link to this record |
|
|
|
|
Author |
L. Rothacker; Marçal Rusiñol; Josep Llados; G.A. Fink |

|
|
Title |
A Two-stage Approach to Segmentation-Free Query-by-example Word Spotting |
Type |
Journal |
|
Year |
2014 |
Publication |
Manuscript Cultures |
Abbreviated Journal |
|
|
|
Volume |
7 |
Issue |
|
Pages |
47-58 |
|
|
Keywords |
|
|
|
Abstract |
With the ongoing progress in digitization, huge document collections and archives have become available to a broad audience. Scanned document images can be transmitted electronically and studied simultaneously throughout the world. While this is very beneficial, it is often impossible to perform automated searches on these document collections. Optical character recognition usually fails when it comes to handwritten or historic documents. In order to address the need for exploring document collections rapidly, researchers are working on word spotting. In query-by-example word spotting scenarios, the user selects an exemplary occurrence of the query word in a document image. The word spotting system then retrieves all regions in the collection that are visually similar to the given example of the query word. The best matching regions are presented to the user and no actual transcription is required.
An important property of a word spotting system is the computational speed with which queries can be executed. In our previous work, we presented a relatively slow but high-precision method. In the present work, we will extend this baseline system to an integrated two-stage approach. In a coarse-grained first stage, we will filter document images efficiently in order to identify regions that are likely to contain the query word. In the fine-grained second stage, these regions will be analyzed with our previously presented high-precision method. Finally, we will report recognition results and query times for the well-known George Washington
benchmark in our evaluation. We achieve state-of-the-art recognition results while the query times can be reduced to 50% in comparison with our baseline. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3190 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Hichem Sahbi |


|
|
Title |
Stochastic Graphlet Embedding |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Neural Networks and Learning Systems |
Abbreviated Journal |
TNNLS |
|
|
Volume |
|
Issue |
|
Pages |
1-14 |
|
|
Keywords |
Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality |
|
|
Abstract |
Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 602.167; 602.168; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuS2018 |
Serial |
3225 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes |


|
|
Title |
Optical Music Recognition by Long Short-Term Memory Networks |
Type |
Book Chapter |
|
Year |
2018 |
Publication |
Graphics Recognition. Current Trends and Evolutions |
Abbreviated Journal |
|
|
|
Volume |
11009 |
Issue |
|
Pages |
81-95 |
|
|
Keywords |
Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory |
|
|
Abstract |
Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
A. Fornes, B. Lamiroy |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-030-02283-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.097; 601.302; 601.330; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRC2018 |
Serial |
3227 |
|
Permanent link to this record |
|
|
|
|
Author |
Lasse Martensson; Ekta Vats; Anders Hast; Alicia Fornes |

|
|
Title |
In Search of the Scribe: Letter Spotting as a Tool for Identifying Scribes in Large Handwritten Text Corpora |
Type |
Journal |
|
Year |
2019 |
Publication |
Journal for Information Technology Studies as a Human Science |
Abbreviated Journal |
HUMAN IT |
|
|
Volume |
14 |
Issue |
2 |
Pages |
95-120 |
|
|
Keywords |
Scribal attribution/ writer identification; digital palaeography; word spotting; mediaeval charters; mediaeval manuscripts |
|
|
Abstract |
In this article, a form of the so-called word spotting-method is used on a large set of handwritten documents in order to identify those that contain script of similar execution. The point of departure for the investigation is the mediaeval Swedish manuscript Cod. Holm. D 3. The main scribe of this manuscript has yet not been identified in other documents. The current attempt aims at localising other documents that display a large degree of similarity in the characteristics of the script, these being possible candidates for being executed by the same hand. For this purpose, the method of word spotting has been employed, focusing on individual letters, and therefore the process is referred to as letter spotting in the article. In this process, a set of ‘g’:s, ‘h’:s and ‘k’:s have been selected as templates, and then a search has been made for close matches among the mediaeval Swedish charters. The search resulted in a number of charters that displayed great similarities with the manuscript D 3. The used letter spotting method thus proofed to be a very efficient sorting tool localising similar script samples. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MVH2019 |
Serial |
3234 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Lluis Gomez |

|
|
Title |
Avances en clasificación de imágenes en los últimos diez años. Perspectivas y limitaciones en el ámbito de archivos fotográficos históricos |
Type |
Journal |
|
Year |
2018 |
Publication |
Revista anual de la Asociación de Archiveros de Castilla y León |
Abbreviated Journal |
|
|
|
Volume |
21 |
Issue |
|
Pages |
161-174 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuG2018 |
Serial |
3239 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz; Oriol Ramos Terrades |

|
|
Title |
A probabilistic framework for handwritten text line segmentation |
Type |
Miscellaneous |
|
Year |
2018 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Document Analysis; Text Line Segmentation; EM algorithm; Probabilistic Graphical Models; Parameter Learning |
|
|
Abstract |
We successfully combine Expectation-Maximization algorithm and variational
approaches for parameter learning and computing inference on Markov random fields. This is a general method that can be applied to many computer
vision tasks. In this paper, we apply it to handwritten text line segmentation.
We conduct several experiments that demonstrate that our method deal with
common issues of this task, such as complex document layout or non-latin
scripts. The obtained results prove that our method achieve state-of-theart performance on different benchmark datasets without any particular fine
tuning step. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CrR2018 |
Serial |
3253 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone |

|
|
Title |
DSD: document sparse-based denoising algorithm |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Pattern Analysis and Applications |
Abbreviated Journal |
PAA |
|
|
Volume |
22 |
Issue |
1 |
Pages |
177–186 |
|
|
Keywords |
Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models |
|
|
Abstract |
In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRT2019 |
Serial |
3254 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Palaiahnakote Shivakumara; K.S. Raghunanda; Umapada Pal; Tong Lu; G. Hemantha Kumar; Chee Seng Chan |

|
|
Title |
Script independent approach for multi-oriented text detection in scene image |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume |
242 |
Issue |
|
Pages |
96-112 |
|
|
Keywords |
|
|
|
Abstract |
Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability. |
|
|
Address  |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DSR2017 |
Serial |
3260 |
|
Permanent link to this record |