toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title New Approach for Symbol Recognition Combining Shape Context of Interest Points with Sparse Representation Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 265-269  
  Keywords  
  Abstract (up) In this paper, we propose a new approach for symbol description. Our method is built based on the combination of shape context of interest points descriptor and sparse representation. More specifically, we first learn a dictionary describing shape context of interest point descriptors. Then, based on information retrieval techniques, we build a vector model for each symbol based on its sparse representation in a visual vocabulary whose visual words are columns in the learneddictionary. The retrieval task is performed by ranking symbols based on similarity between vector models. Evaluation of our method, using benchmark datasets, demonstrates the validity of our approach and shows that it outperforms related state-of-theart methods.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DTR2013b Serial 2331  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Text/graphic separation using a sparse representation with multi-learned dictionaries Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords Graphics Recognition; Layout Analysis; Document Understandin  
  Abstract (up) In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and non-overlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Same-sized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a post-processing step, text regions are further filtered out by using some learned thresholds.  
  Address Tsukuba  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DTR2012a Serial 2135  
Permanent link to this record
 

 
Author Youssef El Rhabi; Simon Loic; Brun Luc; Josep Llados; Felipe Lumbreras edit  doi
openurl 
  Title Information Theoretic Rotationwise Robust Binary Descriptor Learning Type Conference Article
  Year 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume Issue Pages 368-378  
  Keywords  
  Abstract (up) In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications.  
  Address Mérida; Mexico; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; ADAS; 600.097; 600.086 Approved no  
  Call Number Admin @ si @ RLL2016 Serial 2871  
Permanent link to this record
 

 
Author Q. Bao; Marçal Rusiñol; M.Coustaty; Muhammad Muzzamil Luqman; C.D. Tran; Jean-Marc Ogier edit   pdf
doi  openurl
  Title Delaunay triangulation-based features for Camera-based document image retrieval system Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing  
  Abstract (up) In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 600.084; 600.077 Approved no  
  Call Number Admin @ si @ BRC2016 Serial 2757  
Permanent link to this record
 

 
Author Farshad Nourbakhsh; Dimosthenis Karatzas; Ernest Valveny edit  doi
isbn  openurl
  Title A polar-based logo representation based on topological and colour features Type Conference Article
  Year 2010 Publication 9th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 341–348  
  Keywords  
  Abstract (up) In this paper, we propose a novel rotation and scale invariant method for colour logo retrieval and classification, which involves performing a simple colour segmentation and subsequently describing each of the resultant colour components based on a set of topological and colour features. A polar representation is used to represent the logo and the subsequent logo matching is based on Cyclic Dynamic Time Warping (CDTW). We also show how combining information about the global distribution of the logo components and their local neighbourhood using the Delaunay triangulation allows to improve the results. All experiments are performed on a dataset of 2500 instances of 100 colour logo images in different rotations and scales.  
  Address Boston; USA;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60558-773-8 Medium  
  Area Expedition Conference DAS  
  Notes DAG Approved no  
  Call Number DAG @ dag @ NKV2010 Serial 1436  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Andres Mafla; Ali Furkan Biten; Alicia Fornes; Yousri Kessentini; Josep Llados; Lluis Gomez; Dimosthenis Karatzas edit  url
openurl 
  Title Text-DIAE: a self-supervised degradation invariant autoencoder for text recognition and document enhancement Type Conference Article
  Year 2023 Publication Proceedings of the 37th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume 37 Issue 2 Pages  
  Keywords Representation Learning for Vision; CV Applications; CV Language and Vision; ML Unsupervised; Self-Supervised Learning  
  Abstract (up) In this paper, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE), a self-supervised model designed to tackle two tasks, text recognition (handwritten or scene-text) and document image enhancement. We start by employing a transformer-based architecture that incorporates three pretext tasks as learning objectives to be optimized during pre-training without the usage of labelled data. Each of the pretext objectives is specifically tailored for the final downstream tasks. We conduct several ablation experiments that confirm the design choice of the selected pretext tasks. Importantly, the proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time requiring substantially fewer data samples to converge. Finally, we demonstrate that our method surpasses the state-of-the-art in existing supervised and self-supervised settings in handwritten and scene text recognition and document image enhancement. Our code and trained models will be made publicly available at https://github.com/dali92002/SSL-OCR  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes DAG Approved no  
  Call Number Admin @ si @ SBM2023 Serial 3848  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados edit  url
doi  openurl
  Title Attributed Graph Grammar for floor plan analysis Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 726 - 730  
  Keywords  
  Abstract (up) In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ HRL2015b Serial 2727  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  doi
openurl 
  Title Boosting the Handwritten Word Spotting Experience by Including the User in the Loop Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 3 Pages 1063–1072  
  Keywords Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling  
  Abstract (up) In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ RuL2013 Serial 2343  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title Document Analysis Techniques for Automatic Electoral Document Processing: A Survey Type Conference Article
  Year 2015 Publication E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 Abbreviated Journal  
  Volume Issue Pages 139-141  
  Keywords Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally  
  Abstract (up) In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents.  
  Address Bern; Switzerland; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VoteID  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ TCP2015 Serial 2641  
Permanent link to this record
 

 
Author Ruben Tito; Minesh Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  openurl
  Title ICDAR 2021 Competition on Document Visual Question Answering Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 635-649  
  Keywords  
  Abstract (up) In this report we present results of the ICDAR 2021 edition of the Document Visual Question Challenges. This edition complements the previous tasks on Single Document VQA and Document Collection VQA with a newly introduced on Infographics VQA. Infographics VQA is based on a new dataset of more than 5, 000 infographics images and 30, 000 question-answer pairs. The winner methods have scored 0.6120 ANLS in Infographics VQA task, 0.7743 ANLSL in Document Collection VQA task and 0.8705 ANLS in Single Document VQA. We present a summary of the datasets used for each task, description of each of the submitted methods and the results and analysis of their performance. A summary of the progress made on Single Document VQA since the first edition of the DocVQA 2020 challenge is also presented.  
  Address VIRTUAL; Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ TMJ2021 Serial 3624  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: