toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit  url
doi  openurl
  Title Seal Object Detection in Document Images using GHT of Local Component Shapes Type Conference Article
  Year 2010 Publication 10th ACM Symposium On Applied Computing Abbreviated Journal  
  Volume Issue Pages 23–27  
  Keywords  
  Abstract (up) Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents.  
  Address Sierre, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SAC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2010a Serial 1291  
Permanent link to this record
 

 
Author Asma Bensalah; Antonio Parziale; Giuseppe De Gregorio; Angelo Marcelli; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation Type Conference Article
  Year 2023 Publication 21st International Graphonomics Conference Abbreviated Journal  
  Volume Issue Pages 136–148  
  Keywords  
  Abstract (up) During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.  
  Address Evora; Portugal; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG Approved no  
  Call Number Admin @ si @ BPG2023 Serial 3838  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit  doi
openurl 
  Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
  Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal  
  Volume 13639 Issue Pages 171-184  
  Keywords Object detection; Optical music recognition; Graph neural network  
  Abstract (up) During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.  
  Address December 04 – 07, 2022; Hyderabad, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.162; 600.140; 602.230 Approved no  
  Call Number Admin @ si @ BRF2022b Serial 3740  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit  url
openurl 
  Title Hierarchical graphs for coarse-to-fine error tolerant matching Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 134 Issue Pages 116-124  
  Keywords Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval  
  Abstract (up) During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 603.057; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RLF2020 Serial 3349  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke edit  doi
isbn  openurl
  Title Multiple Classifiers for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 10th International Conference on Multiple Classifier Systems Abbreviated Journal  
  Volume 6713 Issue Pages 36-45  
  Keywords  
  Abstract (up) During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.  
  Address Napoles, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Carlo Sansone; Josef Kittler; Fabio Roli  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21556-8 Medium  
  Area Expedition Conference MCS  
  Notes DAG Approved no  
  Call Number Admin @ si @GVR2011 Serial 1745  
Permanent link to this record
 

 
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes edit   pdf
openurl 
  Title Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité Type Conference Article
  Year 2014 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages 233-248  
  Keywords word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example  
  Abstract (up) Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.
 
  Address Nancy; Francia; March 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ WEG2014c Serial 2564  
Permanent link to this record
 

 
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3074 - 3079  
  Keywords word spotting; coarse-to-fine mechamism; graphbased representation; graph embedding; graph edit distance  
  Abstract (up) Effective information retrieval on handwritten document images has always been a challenging task, especially historical ones. In the paper, we propose a coarse-to-fine handwritten word spotting approach based on graph representation. The presented model comprises both the topological and morphological signatures of the handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. Aiming at developing a practical and efficient word spotting approach for large-scale historical handwritten documents, a fast and coarse comparison is first applied to prune the regions that are not similar to the query based on the graph embedding methodology. Afterwards, the query and regions of interest are compared by graph edit distance based on the Dynamic Time Warping alignment. The proposed approach is evaluated on a public dataset containing 50 pages of historical marriage license records. The results show that the proposed approach achieves a compromise between efficiency and accuracy.  
  Address Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ WEG2014a Serial 2515  
Permanent link to this record
 

 
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title A Novel Learning-free Word Spotting Approach Based on Graph Representation Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 207-211  
  Keywords  
  Abstract (up) Effective information retrieval on handwritten document images has always been a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment result is introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods.  
  Address Tours; France; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ WEG2014b Serial 2517  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume 11455 Issue Pages 71-82  
  Keywords  
  Abstract (up) Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
 

 
Author Josep Llados; Enric Marti; Jordi Regincos edit  openurl
  Title Interpretación de diseños a mano alzada como técnica de entrada a un sistema CAD en un ámbito de arquitectura Type Conference Article
  Year 1993 Publication III National Conference on Computer Graphics Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) En los últimos años, se ha introducido ámpliamente el uso de los sistemas CAD en dominios relacionados con la arquitectura. Dichos sistemas CAD son muy útiles para el arquitecto en el diseño de planos de plantas de edificios. Sin embargo, la utilización eficiente de un CAD requiere un tiempo de aprendizaje, en especial, en la etapa de creación y edición del diseño. Además, una vez familiarizado con un CAD, el arquitecto debe adaptarse a la simbología que éste le permite que, en algunos casos puede ser poco flexible.Con esta motivación, se propone una técnica alternativa de entrada de documentos en sistemas CAD. Dicha técnica se basa en el diseño del plano sobre papel mediante un dibujo lineal hecho a mano alzada a modo de boceto e introducido mediante scanner. Una vez interpretado este dibujo inicial e introducido en el CAD, el arquitecto sólo deber hacer sobre éste los retoques finales del documento.El sistema de entrada propuesto se compone de dos módulos principales: En primer lugar, la extracción de características (puntos característicos, rectas y arcos) de la imagen obtenida mediante scanner. En dicho módulo se aplican principalmente técnicas de procesamiento de imágenes obteniendo como resultado una representaci¢n del dibujo de entrada basada en grafos de atributos. El objetivo del segundo módulo es el de encontrar y reconocer las entidades integrantes del documento (puertas, mesas, etc.) en base a una biblioteca de símbolos definida en el sistema CAD. La implementación de dicho módulo se basa en técnicas de isomorfismo de grafos.El sistema propone una alternativa que permita, mediante el diseño a mano alzada, la introducción de la informaci¢n m s significativa del plano de forma rápida, sencilla y estandarizada por parte del usuario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Granada Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LMR1993 Serial 1571  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: