toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Manuel Carbonell edit  isbn
openurl 
  Title Neural Information Extraction from Semi-structured Documents A Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sectors as fintech, legaltech or insurance process an inflow of millions of forms, invoices, id documents, claims or similar every day. Together with these, historical archives provide gigantic amounts of digitized documents containing useful information that needs to be stored in machine encoded text with a meaningful structure. This procedure, known as information extraction (IE) comprises the steps of localizing and recognizing text, identifying named entities contained in it and optionally finding relationships among its elements. In this work we explore multi-task neural models at image and graph level to solve all steps in a unified way. While doing so we find benefits and limitations of these end-to-end approaches in comparison with sequential separate methods. More specifically, we first propose a method to produce textual as well as semantic labels with a unified model from handwritten text line images. We do so with the use of a convolutional recurrent neural model trained with connectionist temporal classification to predict the textual as well as semantic information encoded in the images. Secondly, motivated by the success of this approach we investigate the unification of the localization and recognition tasks of handwritten text in full pages with an end-to-end model, observing benefits in doing so. Having two models that tackle information extraction subsequent task pairs in an end-to-end to end manner, we lastly contribute with a method to put them all together in a single neural network to solve the whole information extraction pipeline in a unified way. Doing so we observe some benefits and some limitations in the approach, suggesting that in certain cases it is beneficial to train specialized models that excel at a single challenging task of the information extraction process, as it can be the recognition of named entities or the extraction of relationships between them. For this reason we lastly study the use of the recently arrived graph neural network architectures for the semantic tasks of the information extraction process, which are recognition of named entities and relation extraction, achieving promising results on the relation extraction part.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Mauricio Villegas;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-1-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Car20 Serial 3483  
Permanent link to this record
 

 
Author Andres Mafla; Sounak Dey; Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 4022-4032  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MDB2021 Serial 3491  
Permanent link to this record
 

 
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title StacMR: Scene-Text Aware Cross-Modal Retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2219-2229  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MRG2021a Serial 3492  
Permanent link to this record
 

 
Author Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas edit  url
openurl 
  Title Real-time Lexicon-free Scene Text Retrieval Type Journal Article
  Year 2021 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 110 Issue Pages 107656  
  Keywords  
  Abstract In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129; 601.338 Approved no  
  Call Number Admin @ si @ MTD2021 Serial 3493  
Permanent link to this record
 

 
Author Lluis Gomez; Anguelos Nicolaou; Marçal Rusiñol; Dimosthenis Karatzas edit  openurl
  Title 12 years of ICDAR Robust Reading Competitions: The evolution of reading systems for unconstrained text understanding Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number GNR2020 Serial 3494  
Permanent link to this record
 

 
Author Lluis Gomez; Dena Bazazian; Dimosthenis Karatzas edit  openurl
  Title Historical review of scene text detection research Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GBK2020 Serial 3495  
Permanent link to this record
 

 
Author Jon Almazan; Lluis Gomez; Suman Ghosh; Ernest Valveny; Dimosthenis Karatzas edit  openurl
  Title WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Analysis”, K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ AGG2020 Serial 3496  
Permanent link to this record
 

 
Author Raul Gomez; Yahui Liu; Marco de Nadai; Dimosthenis Karatzas; Bruno Lepri; Nicu Sebe edit   pdf
url  openurl
  Title Retrieval Guided Unsupervised Multi-domain Image to Image Translation Type Conference Article
  Year 2020 Publication 28th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style representation. Thus, translation models seek to preserve the content of source images while changing the style to a target visual domain. However, synthesizing new images is extremely challenging especially in multi-domain translations, as the network has to compose content and style to generate reliable and diverse images in multiple domains. In this paper we propose the use of an image retrieval system to assist the image-to-image translation task. First, we train an image-to-image translation model to map images to multiple domains. Then, we train an image retrieval model using real and generated images to find images similar to a query one in content but in a different domain. Finally, we exploit the image retrieval system to fine-tune the image-to-image translation model and generate higher quality images. Our experiments show the effectiveness of the proposed solution and highlight the contribution of the retrieval network, which can benefit from additional unlabeled data and help image-to-image translation models in the presence of scarce data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACM  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GLN2020 Serial 3497  
Permanent link to this record
 

 
Author Minesh Mathew; Dimosthenis Karatzas; C.V. Jawahar edit   pdf
openurl 
  Title DocVQA: A Dataset for VQA on Document Images Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2200-2209  
  Keywords  
  Abstract We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MKJ2021 Serial 3498  
Permanent link to this record
 

 
Author Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer edit   pdf
url  openurl
  Title Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. Type Conference Article
  Year 2020 Publication International Workshop on Artificial Intelligence for Healthcare Applications Abbreviated Journal  
  Volume 12661 Issue Pages 476-489  
  Keywords  
  Abstract Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; 600.121; 600.140; Approved no  
  Call Number Admin @ si @ BCF2020 Serial 3508  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: