toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Fernandez; Josep Llados; Alicia Fornes; R.Manmatha edit   pdf
doi  isbn
openurl 
  Title On Influence of Line Segmentation in Efficient Word Segmentation in Old Manuscripts Type Conference Article
  Year 2012 Publication 13th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages 763-768  
  Keywords document image processing;handwritten character recognition;history;image segmentation;Spanish document;historical document;line segmentation;old handwritten document;old manuscript;word segmentation;Bifurcation;Dynamic programming;Handwriting recognition;Image segmentation;Measurement;Noise;Skeleton;Segmentation;document analysis;document and text processing;handwriting analysis;heuristics;path-finding  
  Abstract he objective of this work is to show the importance of a good line segmentation to obtain better results in the segmentation of words of historical documents. We have used the approach developed by Manmatha and Rothfeder [1] to segment words in old handwritten documents. In their work the lines of the documents are extracted using projections. In this work, we have developed an approach to segment lines more efficiently. The new line segmentation algorithm tackles with skewed, touching and noisy lines, so it is significantly improves word segmentation. Experiments using Spanish documents from the Marriages Database of the Barcelona Cathedral show that this approach reduces the error rate by more than 20%  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-2262-1 Medium  
  Area Expedition Conference ICFHR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FLF2012 Serial 2200  
Permanent link to this record
 

 
Author Jaume Gibert edit  openurl
  Title Vector Space Embedding of Graphs via Statistics of Labelling Information Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.

Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.

In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gib2012 Serial 2204  
Permanent link to this record
 

 
Author Jaume Gibert edit  openurl
  Title Learning structural representations and graph matching paradigms in the context of object recognition Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 143 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gib2009 Serial 2397  
Permanent link to this record
 

 
Author Farshad Nourbakhsh edit  openurl
  Title Colour logo recognition Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 145 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Nou2009 Serial 2399  
Permanent link to this record
 

 
Author Nuria Cirera edit  openurl
  Title Recognition of Handwritten Historical Documents Type Report
  Year 2012 Publication CVC Technical Report Abbreviated Journal  
  Volume 174 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Cir2012 Serial 2416  
Permanent link to this record
 

 
Author T.Chauhan; E.Perales; Kaida Xiao; E.Hird ; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title The achromatic locus: Effect of navigation direction in color space Type Journal Article
  Year 2014 Publication Journal of Vision Abbreviated Journal VSS  
  Volume 14 (1) Issue 25 Pages 1-11  
  Keywords achromatic; unique hues; color constancy; luminance; color space  
  Abstract 5Y Impact Factor: 2.99 / 1st (Ophthalmology)
An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ CPX2014 Serial 2418  
Permanent link to this record
 

 
Author Antonio Clavelli; Dimosthenis Karatzas; Josep Llados; Mario Ferraro; Giuseppe Boccignone edit   pdf
doi  openurl
  Title Modelling task-dependent eye guidance to objects in pictures Type Journal Article
  Year 2014 Publication Cognitive Computation Abbreviated Journal CoCom  
  Volume 6 Issue 3 Pages 558-584  
  Keywords Visual attention; Gaze guidance; Value; Payoff; Stochastic fixation prediction  
  Abstract 5Y Impact Factor: 1.14 / 3rd (Computer Science, Artificial Intelligence)
We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN 1866-9956 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.045; 605.203; 601.212; 600.077 Approved no  
  Call Number Admin @ si @ CKL2014 Serial 2419  
Permanent link to this record
 

 
Author Miquel Ferrer; I. Bardaji; Ernest Valveny; Dimosthenis Karatzas; Horst Bunke edit  doi
isbn  openurl
  Title Median Graph Computation by Means of Graph Embedding into Vector Spaces Type Book Chapter
  Year 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 45-72  
  Keywords  
  Abstract In pattern recognition [8, 14], a key issue to be addressed when designing a system is how to represent input patterns. Feature vectors is a common option. That is, a set of numerical features describing relevant properties of the pattern are computed and arranged in a vector form. The main advantages of this kind of representation are computational simplicity and a well sound mathematical foundation. Thus, a large number of operations are available to work with vectors and a large repository of algorithms for pattern analysis and classification exist. However, the simple structure of feature vectors might not be the best option for complex patterns where nonnumerical features or relations between different parts of the pattern become relevant.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor Yun Fu; Yungian Ma  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FBV2013 Serial 2421  
Permanent link to this record
 

 
Author A.Kesidis; Dimosthenis Karatzas edit  doi
isbn  openurl
  Title Logo and Trademark Recognition Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume D Issue Pages 591-646  
  Keywords Logo recognition; Logo removal; Logo spotting; Trademark registration; Trademark retrieval systems  
  Abstract The importance of logos and trademarks in nowadays society is indisputable, variably seen under a positive light as a valuable service for consumers or a negative one as a catalyst of ever-increasing consumerism. This chapter discusses the technical approaches for enabling machines to work with logos, looking into the latest methodologies for logo detection, localization, representation, recognition, retrieval, and spotting in a variety of media. This analysis is presented in the context of three different applications covering the complete depth and breadth of state of the art techniques. These are trademark retrieval systems, logo recognition in document images, and logo detection and removal in images and videos. This chapter, due to the very nature of logos and trademarks, brings together various facets of document image analysis spanning graphical and textual content, while it links document image analysis to other computer vision domains, especially when it comes to the analysis of real-scene videos and images.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-858-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ KeK2014 Serial 2425  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  openurl
  Title Speech balloon contour classification in comics Type Conference Article
  Year 2013 Publication 10th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Comic books digitization combined with subsequent comic book understanding create a variety of new applications, including mobile reading and data mining. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. In this work we detail a novel approach for classifying speech balloon in scanned comics book pages based on their contour time series.  
  Address Bethlehem; PA; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (down)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.056 Approved no  
  Call Number Admin @ si @ RKB2013 Serial 2429  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: