toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Miquel Ferrer; Ernest Valveny; F. Serratosa edit  doi
openurl 
  Title Median Graphs: A Genetic Approach based on New Theoretical Properties Type Journal Article
  Year (up) 2009 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 42 Issue 9 Pages 2003–2012  
  Keywords Median graph; Genetic search; Maximum common subgraph; Graph matching; Structural pattern recognition  
  Abstract Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present two major contributions. On one side, and from a theoretical point of view, we show new theoretical properties of the median graph. On the other side, using these new properties, we present a new approximate algorithm based on the genetic search, that improves the computation of the median graph. Finally, we perform a set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity. With these results, we show how the concept of the median graph can be used in real applications and leaves the box of the only-theoretical concepts, demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FVS2009b Serial 1167  
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados edit  doi
openurl 
  Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
  Year (up) 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 15 Pages 1424–1433  
  Keywords  
  Abstract Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; DAG; MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Ernest Valveny; Salvatore Tabbone edit  doi
openurl 
  Title Optimal Classifier Fusion in a Non-Bayesian Probabilistic Framework Type Journal Article
  Year (up) 2009 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 31 Issue 9 Pages 1630–1644  
  Keywords  
  Abstract The combination of the output of classifiers has been one of the strategies used to improve classification rates in general purpose classification systems. Some of the most common approaches can be explained using the Bayes' formula. In this paper, we tackle the problem of the combination of classifiers using a non-Bayesian probabilistic framework. This approach permits us to derive two linear combination rules that minimize misclassification rates under some constraints on the distribution of classifiers. In order to show the validity of this approach we have compared it with other popular combination rules from a theoretical viewpoint using a synthetic data set, and experimentally using two standard databases: the MNIST handwritten digit database and the GREC symbol database. Results on the synthetic data set show the validity of the theoretical approach. Indeed, results on real data show that the proposed methods outperform other common combination schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RVT2009 Serial 1220  
Permanent link to this record
 

 
Author S. Chanda; Umapada Pal; Oriol Ramos Terrades edit  doi
openurl 
  Title Word-Wise Thai and Roman Script Identification Type Journal
  Year (up) 2009 Publication ACM Transactions on Asian Language Information Processing Abbreviated Journal TALIP  
  Volume 8 Issue 3 Pages 1-21  
  Keywords  
  Abstract In some Thai documents, a single text line of a printed document page may contain words of both Thai and Roman scripts. For the Optical Character Recognition (OCR) of such a document page it is better to identify, at first, Thai and Roman script portions and then to use individual OCR systems of the respective scripts on these identified portions. In this article, an SVM-based method is proposed for identification of word-wise printed Roman and Thai scripts from a single line of a document page. Here, at first, the document is segmented into lines and then lines are segmented into character groups (words). In the proposed scheme, we identify the script of a character group combining different character features obtained from structural shape, profile behavior, component overlapping information, topological properties, and water reservoir concept, etc. Based on the experiment on 10,000 data (words) we obtained 99.62% script identification accuracy from the proposed scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-0226 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ CPR2009f Serial 1869  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados; Gemma Sanchez edit  doi
openurl 
  Title Symbol Spotting in Vectorized Technical Drawings Through a Lookup Table of Region Strings Type Journal Article
  Year (up) 2010 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 13 Issue 3 Pages 321-331  
  Keywords  
  Abstract In this paper, we address the problem of symbol spotting in technical document images applied to scanned and vectorized line drawings. Like any information spotting architecture, our approach has two components. First, symbols are decomposed in primitives which are compactly represented and second a primitive indexing structure aims to efficiently retrieve similar primitives. Primitives are encoded in terms of attributed strings representing closed regions. Similar strings are clustered in a lookup table so that the set median strings act as indexing keys. A voting scheme formulates hypothesis in certain locations of the line drawing image where there is a high presence of regions similar to the queried ones, and therefore, a high probability to find the queried graphical symbol. The proposed approach is illustrated in a framework consisting in spotting furniture symbols in architectural drawings. It has been proved to work even in the presence of noise and distortion introduced by the scanning and raster-to-vector processes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RLS2010 Serial 1165  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: