|
Records |
Links |
|
Author |
David Fernandez; Josep Llados; Alicia Fornes |

|
|
Title |
A graph-based approach for segmenting touching lines in historical handwritten documents |
Type |
Journal Article |
|
Year  |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
3 |
Pages |
293-312 |
|
|
Keywords |
Text line segmentation; Handwritten documents; Document image processing; Historical document analysis |
|
|
Abstract |
Text line segmentation in handwritten documents is an important task in the recognition of historical documents. Handwritten document images contain text lines with multiple orientations, touching and overlapping characters between consecutive text lines and different document structures, making line segmentation a difficult task. In this paper, we present a new approach for handwritten text line segmentation solving the problems of touching components, curvilinear text lines and horizontally overlapping components. The proposed algorithm formulates line segmentation as finding the central path in the area between two consecutive lines. This is solved as a graph traversal problem. A graph is constructed using the skeleton of the image. Then, a path-finding algorithm is used to find the optimum path between text lines. The proposed algorithm has been evaluated on a comprehensive dataset consisting of five databases: ICDAR2009, ICDAR2013, UMD, the George Washington and the Barcelona Marriages Database. The proposed method outperforms the state-of-the-art considering the different types and difficulties of the benchmarking data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLF2014 |
Serial |
2459 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |

|
|
Title |
Word Spotting and Recognition with Embedded Attributes |
Type |
Journal Article |
|
Year  |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
12 |
Pages |
2552 - 2566 |
|
|
Keywords |
|
|
|
Abstract |
This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 600.045; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2014a |
Serial |
2483 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |

|
|
Title |
Segmentation-free Word Spotting with Exemplar SVMs |
Type |
Journal Article |
|
Year  |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
12 |
Pages |
3967–3978 |
|
|
Keywords |
Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression |
|
|
Abstract |
In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.056; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2014b |
Serial |
2485 |
|
Permanent link to this record |
|
|
|
|
Author |
C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger |


|
|
Title |
Limitations of visual gamma corrections in LCD displays |
Type |
Journal Article |
|
Year  |
2014 |
Publication |
Displays |
Abbreviated Journal |
Dis |
|
|
Volume |
35 |
Issue |
5 |
Pages |
227–239 |
|
|
Keywords |
Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration |
|
|
Abstract |
A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CIC; DAG; 600.052; 600.077; 600.074 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PRK2014 |
Serial |
2511 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados |

|
|
Title |
Multimodal page classification in administrative document image streams |
Type |
Journal Article |
|
Year  |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
4 |
Pages |
331-341 |
|
|
Keywords |
Digital mail room; Multimodal page classification; Visual and textual document description |
|
|
Abstract |
In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFK2014 |
Serial |
2523 |
|
Permanent link to this record |