|
Records |
Links |
|
Author |
Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez |
|
|
Title |
Statistical Segmentation and Structural Recognition for Floor Plan Interpretation |
Type |
Journal Article |
|
Year |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
3 |
Pages |
221-237 |
|
|
Keywords |
|
|
|
Abstract |
A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
HSL2014 |
Serial |
2370 |
|
Permanent link to this record |
|
|
|
|
Author |
Palaiahnakote Shivakumara; Anjan Dutta; Trung Quy Phan; Chew Lim Tan; Umapada Pal |
|
|
Title |
A Novel Mutual Nearest Neighbor based Symmetry for Text Frame Classification in Video |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
8 |
Pages |
1671-1683 |
|
|
Keywords |
|
|
|
Abstract |
In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max–Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDP2011 |
Serial |
1727 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva |
|
|
Title |
Circular Blurred Shape Model for Multiclass Symbol Recognition |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
41 |
Issue |
2 |
Pages |
497-506 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1083-4419 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; DAG;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ EFP2011 |
Serial |
1784 |
|
Permanent link to this record |
|
|
|
|
Author |
Palaiahnakote Shivakumara; Anjan Dutta; Chew Lim Tan; Umapada Pal |
|
|
Title |
Multi-oriented scene text detection in video based on wavelet and angle projection boundary growing |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
72 |
Issue |
1 |
Pages |
515-539 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we address two complex issues: 1) Text frame classification and 2) Multi-oriented text detection in video text frame. We first divide a video frame into 16 blocks and propose a combination of wavelet and median-moments with k-means clustering at the block level to identify probable text blocks. For each probable text block, the method applies the same combination of feature with k-means clustering over a sliding window running through the blocks to identify potential text candidates. We introduce a new idea of symmetry on text candidates in each block based on the observation that pixel distribution in text exhibits a symmetric pattern. The method integrates all blocks containing text candidates in the frame and then all text candidates are mapped on to a Sobel edge map of the original frame to obtain text representatives. To tackle the multi-orientation problem, we present a new method called Angle Projection Boundary Growing (APBG) which is an iterative algorithm and works based on a nearest neighbor concept. APBG is then applied on the text representatives to fix the bounding box for multi-oriented text lines in the video frame. Directional information is used to eliminate false positives. Experimental results on a variety of datasets such as non-horizontal, horizontal, publicly available data (Hua’s data) and ICDAR-03 competition data (camera images) show that the proposed method outperforms existing methods proposed for video and the state of the art methods for scene text as well. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1380-7501 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDT2014 |
Serial |
2357 |
|
Permanent link to this record |
|
|
|
|
Author |
Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas; Sophie Wuerger |
|
|
Title |
Visual Gamma Correction for LCD Displays |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Displays |
Abbreviated Journal |
DIS |
|
|
Volume |
32 |
Issue |
1 |
Pages |
17-23 |
|
|
Keywords |
Display calibration; Psychophysics ; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration |
|
|
Abstract |
An improved method for visual gamma correction is developed for LCD displays to increase the accuracy of digital colour reproduction. Rather than utilising a photometric measurement device, we use observ- ers’ visual luminance judgements for gamma correction. Eight half tone patterns were designed to gen- erate relative luminances from 1/9 to 8/9 for each colour channel. A psychophysical experiment was conducted on an LCD display to find the digital signals corresponding to each relative luminance by visually matching the half-tone background to a uniform colour patch. Both inter- and intra-observer vari- ability for the eight luminance matches in each channel were assessed and the luminance matches proved to be consistent across observers (DE00 < 3.5) and repeatable (DE00 < 2.2). Based on the individual observer judgements, the display opto-electronic transfer function (OETF) was estimated by using either a 3rd order polynomial regression or linear interpolation for each colour channel. The performance of the proposed method is evaluated by predicting the CIE tristimulus values of a set of coloured patches (using the observer-based OETFs) and comparing them to the expected CIE tristimulus values (using the OETF obtained from spectro-radiometric luminance measurements). The resulting colour differences range from 2 to 4.6 DE00. We conclude that this observer-based method of visual gamma correction is useful to estimate the OETF for LCD displays. Its major advantage is that no particular functional relationship between digital inputs and luminance outputs has to be assumed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ XFK2011 |
Serial |
1815 |
|
Permanent link to this record |