|
Records |
Links |
|
Author |
B. Gautam; Oriol Ramos Terrades; Joana Maria Pujadas-Mora; Miquel Valls-Figols |
|
|
Title |
Knowledge graph based methods for record linkage |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
136 |
Issue |
|
Pages |
127-133 |
|
|
Keywords |
|
|
|
Abstract |
Nowadays, it is common in Historical Demography the use of individual-level data as a consequence of a predominant life-course approach for the understanding of the demographic behaviour, family transition, mobility, etc. Advanced record linkage is key since it allows increasing the data complexity and its volume to be analyzed. However, current methods are constrained to link data from the same kind of sources. Knowledge graph are flexible semantic representations, which allow to encode data variability and semantic relations in a structured manner.
In this paper we propose the use of knowledge graph methods to tackle record linkage tasks. The proposed method, named WERL, takes advantage of the main knowledge graph properties and learns embedding vectors to encode census information. These embeddings are properly weighted to maximize the record linkage performance. We have evaluated this method on benchmark data sets and we have compared it to related methods with stimulating and satisfactory results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRP2020 |
Serial |
3453 |
|
Permanent link to this record |
|
|
|
|
Author |
Manuel Carbonell; Alicia Fornes; Mauricio Villegas; Josep Llados |
|
|
Title |
A Neural Model for Text Localization, Transcription and Named Entity Recognition in Full Pages |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
136 |
Issue |
|
Pages |
219-227 |
|
|
Keywords |
|
|
|
Abstract |
In the last years, the consolidation of deep neural network architectures for information extraction in document images has brought big improvements in the performance of each of the tasks involved in this process, consisting of text localization, transcription, and named entity recognition. However, this process is traditionally performed with separate methods for each task. In this work we propose an end-to-end model that combines a one stage object detection network with branches for the recognition of text and named entities respectively in a way that shared features can be learned simultaneously from the training error of each of the tasks. By doing so the model jointly performs handwritten text detection, transcription, and named entity recognition at page level with a single feed forward step. We exhaustively evaluate our approach on different datasets, discussing its advantages and limitations compared to sequential approaches. The results show that the model is capable of benefiting from shared features by simultaneously solving interdependent tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 601.311; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFV2020 |
Serial |
3451 |
|
Permanent link to this record |
|
|
|
|
Author |
Arka Ujjal Dey; Suman Ghosh; Ernest Valveny; Gaurav Harit |
|
|
Title |
Beyond Visual Semantics: Exploring the Role of Scene Text in Image Understanding |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
149 |
Issue |
|
Pages |
164-171 |
|
|
Keywords |
|
|
|
Abstract |
Images with visual and scene text content are ubiquitous in everyday life. However, current image interpretation systems are mostly limited to using only the visual features, neglecting to leverage the scene text content. In this paper, we propose to jointly use scene text and visual channels for robust semantic interpretation of images. We do not only extract and encode visual and scene text cues, but also model their interplay to generate a contextual joint embedding with richer semantics. The contextual embedding thus generated is applied to retrieval and classification tasks on multimedia images, with scene text content, to demonstrate its effectiveness. In the retrieval framework, we augment our learned text-visual semantic representation with scene text cues, to mitigate vocabulary misses that may have occurred during the semantic embedding. To deal with irrelevant or erroneous recognition of scene text, we also apply query-based attention to our text channel. We show how the multi-channel approach, involving visual semantics and scene text, improves upon state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGV2021 |
Serial |
3364 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |
|
|
Title |
Hierarchical graphs for coarse-to-fine error tolerant matching |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
134 |
Issue |
|
Pages |
116-124 |
|
|
Keywords |
Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval |
|
|
Abstract |
During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 601.302; 603.057; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2020 |
Serial |
3349 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes |
|
|
Title |
Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
NEUCOMA |
|
|
Volume |
32 |
Issue |
|
Pages |
11579–11596 |
|
|
Keywords |
|
|
|
Abstract |
Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121; 600.141 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRL2020 |
Serial |
3348 |
|
Permanent link to this record |