|
Records |
Links |
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |


|
|
Title |
Beyond Document Object Detection: Instance-Level Segmentation of Complex Layouts |
Type |
Journal Article |
|
Year |
2021 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
24 |
Issue |
|
Pages |
269–281 |
|
|
Keywords |
|
|
|
Abstract |
Information extraction is a fundamental task of many business intelligence services that entail massive document processing. Understanding a document page structure in terms of its layout provides contextual support which is helpful in the semantic interpretation of the document terms. In this paper, inspired by the progress of deep learning methodologies applied to the task of object recognition, we transfer these models to the specific case of document object detection, reformulating the traditional problem of document layout analysis. Moreover, we importantly contribute to prior arts by defining the task of instance segmentation on the document image domain. An instance segmentation paradigm is especially important in complex layouts whose contents should interact for the proper rendering of the page, i.e., the proper text wrapping around an image. Finally, we provide an extensive evaluation, both qualitative and quantitative, that demonstrates the superior performance of the proposed methodology over the current state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021b |
Serial  |
3574 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas |


|
|
Title |
Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
129 |
Issue |
|
Pages |
108766 |
|
|
Keywords |
|
|
|
Abstract |
The advent of recurrent neural networks for handwriting recognition marked an important milestone reaching impressive recognition accuracies despite the great variability that we observe across different writing styles. Sequential architectures are a perfect fit to model text lines, not only because of the inherent temporal aspect of text, but also to learn probability distributions over sequences of characters and words. However, using such recurrent paradigms comes at a cost at training stage, since their sequential pipelines prevent parallelization. In this work, we introduce a non-recurrent approach to recognize handwritten text by the use of transformer models. We propose a novel method that bypasses any recurrence. By using multi-head self-attention layers both at the visual and textual stages, we are able to tackle character recognition as well as to learn language-related dependencies of the character sequences to be decoded. Our model is unconstrained to any predefined vocabulary, being able to recognize out-of-vocabulary words, i.e. words that do not appear in the training vocabulary. We significantly advance over prior art and demonstrate that satisfactory recognition accuracies are yielded even in few-shot learning scenarios. |
|
|
Address |
Sept. 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRR2022 |
Serial  |
3556 |
|
Permanent link to this record |
|
|
|
|
Author |
Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas |

|
|
Title |
Real-time Lexicon-free Scene Text Retrieval |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
110 |
Issue |
|
Pages |
107656 |
|
|
Keywords |
|
|
|
Abstract |
In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.129; 601.338 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MTD2021 |
Serial  |
3493 |
|
Permanent link to this record |
|
|
|
|
Author |
Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal |


|
|
Title |
Evaluation of the Effect of Improper Segmentation on Word Spotting |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
22 |
Issue |
|
Pages |
361-374 |
|
|
Keywords |
|
|
|
Abstract |
Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.084; 600.121; 600.140; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DNL2019 |
Serial  |
3455 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Y.Kessentini |


|
|
Title |
DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
44 |
Issue |
3 |
Pages |
1180-1191 |
|
|
Keywords |
|
|
|
Abstract |
Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems. |
|
|
Address |
1 March 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 602.230; 600.121; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SoK2022 |
Serial  |
3454 |
|
Permanent link to this record |