|
Records |
Links |
|
Author |
Josep Llados; Dimosthenis Karatzas; Joan Mas; Gemma Sanchez |

|
|
Title |
A Generic Architecture for the Conversion of Document Collections into Semantically Annotated Digital Archives |
Type |
Journal |
|
Year |
2008 |
Publication |
Journal of Universal Computer Science |
Abbreviated Journal |
|
|
|
Volume |
14 |
Issue  |
18 |
Pages |
2912–2935 |
|
|
Keywords |
Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ LKM2008 |
Serial |
1142 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |

|
|
Title |
A Performance Evaluation Protocol for Symbol Spotting Systems in Terms of Recognition and Location Indices |
Type |
Journal Article |
|
Year |
2009 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
12 |
Issue  |
2 |
Pages |
83-96 |
|
|
Keywords |
Performance evaluation; Symbol Spotting; Graphics Recognition |
|
|
Abstract |
Symbol spotting systems are intended to retrieve regions of interest from a document image database where the queried symbol is likely to be found. They shall have the ability to recognize and locate graphical symbols in a single step. In this paper, we present a set of measures to evaluate the performance of a symbol spotting system in terms of recognition abilities, location accuracy and scalability. We show that the proposed measures allow to determine the weaknesses and strengths of different methods. In particular we have tested a symbol spotting method based on a set of four different off-the-shelf shape descriptors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RuL2009a |
Serial |
1166 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera; Alicia Fornes; Oriol Pujol; Josep Llados; Petia Radeva |

|
|
Title |
Circular Blurred Shape Model for Multiclass Symbol Recognition |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Systems, Man and Cybernetics (Part B) (IEEE) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
41 |
Issue  |
2 |
Pages |
497-506 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1083-4419 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; DAG;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ EFP2011 |
Serial |
1784 |
|
Permanent link to this record |
|
|
|
|
Author |
Sophie Wuerger; Kaida Xiao; Dimitris Mylonas; Q. Huang; Dimosthenis Karatzas; Galina Paramei |


|
|
Title |
Blue green color categorization in mandarin english speakers |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of the Optical Society of America A |
Abbreviated Journal |
JOSA A |
|
|
Volume |
29 |
Issue  |
2 |
Pages |
A102-A1207 |
|
|
Keywords |
|
|
|
Abstract |
Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ WXM2012 |
Serial |
2007 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard |


|
|
Title |
Fuzzy Multilevel Graph Embedding |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue  |
2 |
Pages |
551-565 |
|
|
Keywords |
Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic |
|
|
Abstract |
Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.042; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2013a |
Serial |
2270 |
|
Permanent link to this record |