toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Oriol Ramos Terrades; Ernest Valveny edit  doi
openurl 
  Title A new use of the ridgelets transform for describing linear singularities in images Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 6 Pages (down) 587–596  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RaV2006a Serial 635  
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa edit  doi
openurl 
  Title Median graph: A new exact algorithm using a distance based on the maximum common subgraph Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 5 Pages (down) 579–588  
  Keywords  
  Abstract Median graphs have been presented as a useful tool for capturing the essential information of a set of graphs. Nevertheless, computation of optimal solutions is a very hard problem. In this work we present a new and more efficient optimal algorithm for the median graph computation. With the use of a particular cost function that permits the definition of the graph edit distance in terms of the maximum common subgraph, and a prediction function in the backtracking algorithm, we reduce the size of the search space, avoiding the evaluation of a great amount of states and still obtaining the exact median. We present a set of experiments comparing our new algorithm against the previous existing exact algorithm using synthetic data. In addition, we present the first application of the exact median graph computation to real data and we compare the results against an approximate algorithm based on genetic search. These experimental results show that our algorithm outperforms the previous existing exact algorithm and in addition show the potential applicability of the exact solutions to real problems.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FVS2009a Serial 1114  
Permanent link to this record
 

 
Author Antonio Clavelli; Dimosthenis Karatzas; Josep Llados; Mario Ferraro; Giuseppe Boccignone edit   pdf
doi  openurl
  Title Modelling task-dependent eye guidance to objects in pictures Type Journal Article
  Year 2014 Publication Cognitive Computation Abbreviated Journal CoCom  
  Volume 6 Issue 3 Pages (down) 558-584  
  Keywords Visual attention; Gaze guidance; Value; Payoff; Stochastic fixation prediction  
  Abstract 5Y Impact Factor: 1.14 / 3rd (Computer Science, Artificial Intelligence)
We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1866-9956 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.045; 605.203; 601.212; 600.077 Approved no  
  Call Number Admin @ si @ CKL2014 Serial 2419  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  url
doi  openurl
  Title Fuzzy Multilevel Graph Embedding Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 2 Pages (down) 551-565  
  Keywords Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic  
  Abstract Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ LRL2013a Serial 2270  
Permanent link to this record
 

 
Author Marçal Rusiñol; Lluis Pere de las Heras; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title Flowchart Recognition for Non-Textual Information Retrieval in Patent Search Type Journal Article
  Year 2014 Publication Information Retrieval Abbreviated Journal IR  
  Volume 17 Issue 5-6 Pages (down) 545-562  
  Keywords Flowchart recognition; Patent documents; Text/graphics separation; Raster-to-vector conversion; Symbol recognition  
  Abstract Relatively little research has been done on the topic of patent image retrieval and in general in most of the approaches the retrieval is performed in terms of a similarity measure between the query image and the images in the corpus. However, systems aimed at overcoming the semantic gap between the visual description of patent images and their conveyed concepts would be very helpful for patent professionals. In this paper we present a flowchart recognition method aimed at achieving a structured representation of flowchart images that can be further queried semantically. The proposed method was submitted to the CLEF-IP 2012 flowchart recognition task. We report the obtained results on this dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-4564 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RHR2013 Serial 2342  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: