|
Records |
Links |
|
Author  |
Miquel Ferrer; Ernest Valveny; F. Serratosa |

|
|
Title |
Median graph: A new exact algorithm using a distance based on the maximum common subgraph |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
30 |
Issue |
5 |
Pages |
579–588 |
|
|
Keywords |
|
|
|
Abstract |
Median graphs have been presented as a useful tool for capturing the essential information of a set of graphs. Nevertheless, computation of optimal solutions is a very hard problem. In this work we present a new and more efficient optimal algorithm for the median graph computation. With the use of a particular cost function that permits the definition of the graph edit distance in terms of the maximum common subgraph, and a prediction function in the backtracking algorithm, we reduce the size of the search space, avoiding the evaluation of a great amount of states and still obtaining the exact median. We present a set of experiments comparing our new algorithm against the previous existing exact algorithm using synthetic data. In addition, we present the first application of the exact median graph computation to real data and we compare the results against an approximate algorithm based on genetic search. These experimental results show that our algorithm outperforms the previous existing exact algorithm and in addition show the potential applicability of the exact solutions to real problems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Inc. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-8655 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FVS2009a |
Serial |
1114 |
|
Permanent link to this record |
|
|
|
|
Author  |
Miquel Ferrer; Ernest Valveny; F. Serratosa |

|
|
Title |
Median Graphs: A Genetic Approach based on New Theoretical Properties |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
42 |
Issue |
9 |
Pages |
2003–2012 |
|
|
Keywords |
Median graph; Genetic search; Maximum common subgraph; Graph matching; Structural pattern recognition |
|
|
Abstract |
Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present two major contributions. On one side, and from a theoretical point of view, we show new theoretical properties of the median graph. On the other side, using these new properties, we present a new approximate algorithm based on the genetic search, that improves the computation of the median graph. Finally, we perform a set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity. With these results, we show how the concept of the median graph can be used in real applications and leaves the box of the only-theoretical concepts, demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FVS2009b |
Serial |
1167 |
|
Permanent link to this record |
|
|
|
|
Author  |
Miquel Ferrer; Ernest Valveny; F. Serratosa; K. Riesen; Horst Bunke |


|
|
Title |
Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
43 |
Issue |
4 |
Pages |
1642–1655 |
|
|
Keywords |
Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces |
|
|
Abstract |
The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FVS2010 |
Serial |
1294 |
|
Permanent link to this record |
|
|
|
|
Author  |
Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi |

|
|
Title |
Few shots are all you need: A progressive learning approach for low resource handwritten text recognition |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
160 |
Issue |
|
Pages |
43-49 |
|
|
Keywords |
|
|
|
Abstract |
Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162; 602.230 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SFK2022 |
Serial |
3736 |
|
Permanent link to this record |
|
|
|
|
Author  |
Mohamed Ali Souibgui; Asma Bensalah; Jialuo Chen; Alicia Fornes; Michelle Waldispühl |


|
|
Title |
A User Perspective on HTR methods for the Automatic Transcription of Rare Scripts: The Case of Codex Runicus Just Accepted |
Type |
Journal Article |
|
Year |
2023 |
Publication |
ACM Journal on Computing and Cultural Heritage |
Abbreviated Journal |
JOCCH |
|
|
Volume |
15 |
Issue |
4 |
Pages |
1-18 |
|
|
Keywords |
|
|
|
Abstract |
Recent breakthroughs in Artificial Intelligence, Deep Learning and Document Image Analysis and Recognition have significantly eased the creation of digital libraries and the transcription of historical documents. However, for documents in rare scripts with few labelled training data available, current Handwritten Text Recognition (HTR) systems are too constraint. Moreover, research on HTR often focuses on technical aspects only, and rarely puts emphasis on implementing software tools for scholars in Humanities. In this article, we describe, compare and analyse different transcription methods for rare scripts. We evaluate their performance in a real use case of a medieval manuscript written in the runic script (Codex Runicus) and discuss advantages and disadvantages of each method from the user perspective. From this exhaustive analysis and comparison with a fully manual transcription, we raise conclusions and provide recommendations to scholars interested in using automatic transcription tools. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
ACM |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBC2023 |
Serial |
3732 |
|
Permanent link to this record |