|
Records |
Links |
|
Author |
Juan Ignacio Toledo; Manuel Carbonell; Alicia Fornes; Josep Llados |

|
|
Title |
Information Extraction from Historical Handwritten Document Images with a Context-aware Neural Model |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Pattern Recognition |
Abbreviated Journal  |
PR |
|
|
Volume |
86 |
Issue |
|
Pages |
27-36 |
|
|
Keywords |
Document image analysis; Handwritten documents; Named entity recognition; Deep neural networks |
|
|
Abstract |
Many historical manuscripts that hold trustworthy memories of the past societies contain information organized in a structured layout (e.g. census, birth or marriage records). The precious information stored in these documents cannot be effectively used nor accessed without costly annotation efforts. The transcription driven by the semantic categories of words is crucial for the subsequent access. In this paper we describe an approach to extract information from structured historical handwritten text images and build a knowledge representation for the extraction of meaning out of historical data. The method extracts information, such as named entities, without the need of an intermediate transcription step, thanks to the incorporation of context information through language models. Our system has two variants, the first one is based on bigrams, whereas the second one is based on recurrent neural networks. Concretely, our second architecture integrates a Convolutional Neural Network to model visual information from word images together with a Bidirecitonal Long Short Term Memory network to model the relation among the words. This integrated sequential approach is able to extract more information than just the semantic category (e.g. a semantic category can be associated to a person in a record). Our system is generic, it deals with out-of-vocabulary words by design, and it can be applied to structured handwritten texts from different domains. The method has been validated with the ICDAR IEHHR competition protocol, outperforming the existing approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 601.311; 603.057; 600.084; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCF2019 |
Serial |
3166 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Lutz Goldmann; Oriol Ramos Terrades; Diede Rusticus; Alicia Fornes; Josep Llados |

|
|
Title |
Table detection in business document images by message passing networks |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal  |
PR |
|
|
Volume |
127 |
Issue |
|
Pages |
108641 |
|
|
Keywords |
|
|
|
Abstract |
Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches. |
|
|
Address |
July 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.162; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGR2022 |
Serial |
3729 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol |


|
|
Title |
Candidate Fusion: Integrating Language Modelling into a Sequence-to-Sequence Handwritten Word Recognition Architecture |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition |
Abbreviated Journal  |
PR |
|
|
Volume |
112 |
Issue |
|
Pages |
107790 |
|
|
Keywords |
|
|
|
Abstract |
Sequence-to-sequence models have recently become very popular for tackling
handwritten word recognition problems. However, how to effectively integrate an external language model into such recognizer is still a challenging
problem. The main challenge faced when training a language model is to
deal with the language model corpus which is usually different to the one
used for training the handwritten word recognition system. Thus, the bias
between both word corpora leads to incorrectness on the transcriptions, providing similar or even worse performances on the recognition task. In this
work, we introduce Candidate Fusion, a novel way to integrate an external
language model to a sequence-to-sequence architecture. Moreover, it provides suggestions from an external language knowledge, as a new input to
the sequence-to-sequence recognizer. Hence, Candidate Fusion provides two
improvements. On the one hand, the sequence-to-sequence recognizer has
the flexibility not only to combine the information from itself and the language model, but also to choose the importance of the information provided
by the language model. On the other hand, the external language model
has the ability to adapt itself to the training corpus and even learn the
most commonly errors produced from the recognizer. Finally, by conducting
comprehensive experiments, the Candidate Fusion proves to outperform the
state-of-the-art language models for handwritten word recognition tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 601.302; 601.312; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRV2021 |
Serial |
3343 |
|
Permanent link to this record |
|
|
|
|
Author |
Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas |

|
|
Title |
Real-time Lexicon-free Scene Text Retrieval |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition |
Abbreviated Journal  |
PR |
|
|
Volume |
110 |
Issue |
|
Pages |
107656 |
|
|
Keywords |
|
|
|
Abstract |
In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.129; 601.338 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MTD2021 |
Serial |
3493 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas |


|
|
Title |
Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal  |
PR |
|
|
Volume |
129 |
Issue |
|
Pages |
108766 |
|
|
Keywords |
|
|
|
Abstract |
The advent of recurrent neural networks for handwriting recognition marked an important milestone reaching impressive recognition accuracies despite the great variability that we observe across different writing styles. Sequential architectures are a perfect fit to model text lines, not only because of the inherent temporal aspect of text, but also to learn probability distributions over sequences of characters and words. However, using such recurrent paradigms comes at a cost at training stage, since their sequential pipelines prevent parallelization. In this work, we introduce a non-recurrent approach to recognize handwritten text by the use of transformer models. We propose a novel method that bypasses any recurrence. By using multi-head self-attention layers both at the visual and textual stages, we are able to tackle character recognition as well as to learn language-related dependencies of the character sequences to be decoded. Our model is unconstrained to any predefined vocabulary, being able to recognize out-of-vocabulary words, i.e. words that do not appear in the training vocabulary. We significantly advance over prior art and demonstrate that satisfactory recognition accuracies are yielded even in few-shot learning scenarios. |
|
|
Address |
Sept. 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRR2022 |
Serial |
3556 |
|
Permanent link to this record |