toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Spectral sharpening by spherical sampling Type Journal Article
  Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 29 Issue 7 Pages 1199-1210  
  Keywords (up)  
  Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1084-7529 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit  url
openurl 
  Title Towards automatic and flexible concept transfer Type Journal Article
  Year 2012 Publication Computers and Graphics Abbreviated Journal CG  
  Volume 36 Issue 6 Pages 622–634  
  Keywords (up)  
  Abstract This paper introduces a novel approach to automatic, yet flexible, image concepttransfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The presented method modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This method is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. Our framework is flexible for two reasons. First, the user may select one of two modalities to map input image chromaticities to target concept chromaticities depending on the level of photo-realism required. Second, the user may adjust the intensity level of the concepttransfer to his/her liking with a single parameter. The proposed method uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. Results show that our approach yields transferred images which effectively represent concepts as confirmed by a user study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-8493 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ MSM2012 Serial 2002  
Permanent link to this record
 

 
Author Olivier Penacchio; Xavier Otazu; Laura Dempere-Marco edit   pdf
doi  openurl
  Title A Neurodynamical Model of Brightness Induction in V1 Type Journal Article
  Year 2013 Publication PloS ONE Abbreviated Journal Plos  
  Volume 8 Issue 5 Pages e64086  
  Keywords (up)  
  Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas. Recent neurophysiological evidence suggests that brightness information might be explicitly represented in V1, in contrast to the more common assumption that the striate cortex is an area mostly responsive to sensory information. Here we investigate possible neural mechanisms that offer a plausible explanation for such phenomenon. To this end, a neurodynamical model which is based on neurophysiological evidence and focuses on the part of V1 responsible for contextual influences is presented. The proposed computational model successfully accounts for well known psychophysical effects for static contexts and also for brightness induction in dynamic contexts defined by modulating the luminance of surrounding areas. This work suggests that intra-cortical interactions in V1 could, at least partially, explain brightness induction effects and reveals how a common general architecture may account for several different fundamental processes, such as visual saliency and brightness induction, which emerge early in the visual processing pathway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ POD2013 Serial 2242  
Permanent link to this record
 

 
Author Susana Alvarez; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Texton theory revisited: a bag-of-words approach to combine textons Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 12 Pages 4312-4325  
  Keywords (up)  
  Abstract The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ AlV2012a Serial 2130  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Michael Felsberg; Carlo Gatta edit   pdf
doi  openurl
  Title Semantic Pyramids for Gender and Action Recognition Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 8 Pages 3633-3645  
  Keywords (up)  
  Abstract Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 601.160; 600.074; 600.079;MILAB Approved no  
  Call Number Admin @ si @ KWR2014 Serial 2507  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: