toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Geronimo; Angel Sappa; Daniel Ponsa; Antonio Lopez edit   pdf
url  doi
openurl 
  Title 2D-3D based on-board pedestrian detection system Type Journal Article
  Year (down) 2010 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 114 Issue 5 Pages 583–595  
  Keywords Pedestrian detection; Advanced Driver Assistance Systems; Horizon line; Haar wavelets; Edge orientation histograms  
  Abstract During the next decade, on-board pedestrian detection systems will play a key role in the challenge of increasing traffic safety. The main target of these systems, to detect pedestrians in urban scenarios, implies overcoming difficulties like processing outdoor scenes from a mobile platform and searching for aspect-changing objects in cluttered environments. This makes such systems combine techniques in the state-of-the-art Computer Vision. In this paper we present a three module system based on both 2D and 3D cues. The first module uses 3D information to estimate the road plane parameters and thus select a coherent set of regions of interest (ROIs) to be further analyzed. The second module uses Real AdaBoost and a combined set of Haar wavelets and edge orientation histograms to classify the incoming ROIs as pedestrian or non-pedestrian. The final module loops again with the 3D cue in order to verify the classified ROIs and with the 2D in order to refine the final results. According to the results, the integration of the proposed techniques gives rise to a promising system.  
  Address Computer Vision and Image Understanding (Special Issue on Intelligent Vision Systems), Vol. 114(5):583-595  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-3142 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GSP2010 Serial 1341  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  openurl
  Title Learning photometric invariance for object detection Type Journal Article
  Year (down) 2010 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 90 Issue 1 Pages 45-61  
  Keywords road detection  
  Abstract Impact factor: 3.508 (the last available from JCR2009SCI). Position 4/103 in the category Computer Science, Artificial Intelligence. Quartile
Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.
Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2010c Serial 1451  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  doi
openurl 
  Title Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression Type Journal Article
  Year (down) 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 30 Issue 5 Pages 535–543  
  Keywords  
  Abstract This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2009a Serial 1115  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  url
doi  openurl
  Title A Featureless and Stochastic Approach to On-board Stereo Vision System Pose Type Journal Article
  Year (down) 2009 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 27 Issue 9 Pages 1382–1393  
  Keywords On-board stereo vision system; Pose estimation; Featureless approach; Particle filtering; Image warping  
  Abstract This paper presents a direct and stochastic technique for real-time estimation of on-board stereo head’s position and orientation. Unlike existing works which rely on feature extraction either in the image domain or in 3D space, our proposed approach directly estimates the unknown parameters from the stream of stereo pairs’ brightness. The pose parameters are tracked using the particle filtering framework which implicitly enforces the smoothness constraints on the estimated parameters. The proposed technique can be used with a driver assistance applications as well as with augmented reality applications. Extended experiments on urban environments with different road geometries are presented. Comparisons with a 3D data-based approach are presented. Moreover, we provide a performance study aiming at evaluating the accuracy of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2009b Serial 1152  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title An iterative multiresolution scheme for SFM with missing data Type Journal Article
  Year (down) 2009 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 34 Issue 3 Pages 240–258  
  Keywords  
  Abstract Several techniques have been proposed for tackling the Structure from Motion problem through factorization in the case of missing data. However, when the percentage of unknown data is high, most of them may not perform as well as expected. Focussing on this problem, an iterative multiresolution scheme, which aims at recovering missing entries in the originally given input matrix, is proposed. Information recovered following a coarse-to-fine strategy is used for filling in the missing entries. The objective is to recover, as much as possible, missing data in the given matrix.
Thus, when a factorization technique is applied to the partially or totally filled in matrix, instead of to the originally given input one, better results will be obtained. An evaluation study about the robustness to missing and noisy data is reported.
Experimental results obtained with synthetic and real video sequences are presented to show the viability of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2009a Serial 1163  
Permanent link to this record
 

 
Author Daniel Ponsa; Antonio Lopez edit   pdf
doi  openurl
  Title Variance reduction techniques in particle-based visual contour Tracking Type Journal Article
  Year (down) 2009 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 42 Issue 11 Pages 2372–2391  
  Keywords Contour tracking; Active shape models; Kalman filter; Particle filter; Importance sampling; Unscented particle filter; Rao-Blackwellization; Partitioned sampling  
  Abstract This paper presents a comparative study of three different strategies to improve the performance of particle filters, in the context of visual contour tracking: the unscented particle filter, the Rao-Blackwellized particle filter, and the partitioned sampling technique. The tracking problem analyzed is the joint estimation of the global and local transformation of the outline of a given target, represented following the active shape model approach. The main contributions of the paper are the novel adaptations of the considered techniques on this generic problem, and the quantitative assessment of their performance in extensive experimental work done.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ PoL2009a Serial 1168  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Predicting Missing Ratings in Recommender Systems: Adapted Factorization Approach Type Journal Article
  Year (down) 2009 Publication International Journal of Electronic Commerce Abbreviated Journal  
  Volume 14 Issue 1 Pages 89-108  
  Keywords  
  Abstract The paper presents a factorization-based approach to make predictions in recommender systems. These systems are widely used in electronic commerce to help customers find products according to their preferences. Taking into account the customer's ratings of some products available in the system, the recommender system tries to predict the ratings the customer would give to other products in the system. The proposed factorization-based approach uses all the information provided to compute the predicted ratings, in the same way as approaches based on Singular Value Decomposition (SVD). The main advantage of this technique versus SVD-based approaches is that it can deal with missing data. It also has a smaller computational cost. Experimental results with public data sets are provided to show that the proposed adapted factorization approach gives better predicted ratings than a widely used SVD-based approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1086-4415 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2009b Serial 1237  
Permanent link to this record
 

 
Author Arnau Ramisa; Adriana Tapus; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Robust Vision-Based Localization using Combinations of Local Feature Regions Detectors Type Journal Article
  Year (down) 2009 Publication Autonomous Robots Abbreviated Journal AR  
  Volume 27 Issue 4 Pages 373-385  
  Keywords  
  Abstract This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°.
In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0929-5593 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RTA2009 Serial 1245  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
openurl 
  Title Rank Estimation in 3D Multibody Motion Segmentation Type Journal
  Year (down) 2008 Publication Electronic Letters Abbreviated Journal  
  Volume 44 Issue 4 Pages 279-280  
  Keywords  
  Abstract A novel technique for rank estimation in 3D multibody motion segmentation is proposed. It is based on the study of the frequency spectra of moving rigid objects and does not use or assume a prior knowledge of the objects contained in the scene (i.e. number of objects and motion). The significance of rank estimation on multibody motion segmentation results is shown by using two motion segmentation algorithms over both synthetic and real data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2008a Serial 939  
Permanent link to this record
 

 
Author Joan Serrat; Ferran Diego; Felipe Lumbreras; Jose Manuel Alvarez; Antonio Lopez; C. Elvira edit   pdf
openurl 
  Title Dynamic Comparison of Headlights Type Journal
  Year (down) 2008 Publication Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Abbreviated Journal  
  Volume 222 Issue 5 Pages 643–656  
  Keywords video alignment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SDL2008a Serial 958  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: