toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mohammad Rouhani; Angel Sappa; E. Boyer edit  doi
openurl 
  Title Implicit B-Spline Surface Reconstruction Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 1 Pages 22 - 32  
  Keywords  
  Abstract This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ RSB2015 Serial 2541  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 2 Pages 545–555  
  Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization  
  Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no  
  Call Number Admin @ si @ RAT2015a Serial 2544  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author Miguel Oliveira; Angel Sappa; Victor Santos edit  doi
openurl 
  Title A probabilistic approach for color correction in image mosaicking applications Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 14 Issue 2 Pages 508 - 523  
  Keywords Color correction; image mosaicking; color transfer; color palette mapping functions  
  Abstract Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ OSS2015b Serial 2554  
Permanent link to this record
 

 
Author Francisco Blanco; Felipe Lumbreras; Joan Serrat; Roswitha Siener; Silvia Serranti; Giuseppe Bonifazi; Montserrat Lopez Mesas; Manuel Valiente edit  doi
openurl 
  Title Taking advantage of Hyperspectral Imaging classification of urinary stones against conventional IR Spectroscopy Type Journal Article
  Year 2014 Publication Journal of Biomedical Optics Abbreviated Journal JBiO  
  Volume 19 Issue 12 Pages 126004-1 - 126004-9  
  Keywords  
  Abstract The analysis of urinary stones is mandatory for the best management of the disease after the stone passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an individualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed classification model yields >90% correct classification rate when compared to IR and is able to precisely locate stone components within the structure of the stone with a 15 µm resolution. Due to the little sample pretreatment, low analysis time, good performance of the model, and the automation of the measurements, they become analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ BLS2014 Serial 2563  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Sergi Robles; Gemma Sanchez edit  doi
openurl 
  Title CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 1 Pages 15-30  
  Keywords  
  Abstract Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HRR2015 Serial 2567  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 51 Issue Pages 16-22  
  Keywords  
  Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 56 Issue Pages 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial 2588  
Permanent link to this record
 

 
Author Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda edit  doi
openurl 
  Title PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities Type Journal
  Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal JOTSE  
  Volume 5 Issue 2 Pages 87-96  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MRG2015 Serial 2608  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title The Richer Representation the Better Registration Type Journal Article
  Year 2013 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 22 Issue 12 Pages 5036-5049  
  Keywords  
  Abstract In this paper, the registration problem is formulated as a point to model distance minimization. Unlike most of the existing works, which are based on minimizing a point-wise correspondence term, this formulation avoids the correspondence search that is time-consuming. In the first stage, the target set is described through an implicit function by employing a linear least squares fitting. This function can be either an implicit polynomial or an implicit B-spline from a coarse to fine representation. In the second stage, we show how the obtained implicit representation is used as an interface to convert point-to-point registration into point-to-implicit problem. Furthermore, we show that this registration distance is smooth and can be minimized through the Levengberg-Marquardt algorithm. All the formulations presented for both stages are compact and easy to implement. In addition, we show that our registration method can be handled using any implicit representation though some are coarse and others provide finer representations; hence, a tradeoff between speed and accuracy can be set by employing the right implicit function. Experimental results and comparisons in 2D and 3D show the robustness and the speed of convergence of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2013 Serial 2665  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: