|
Records |
Links |
|
Author |
J. Pladellorens; Joan Serrat; A. Castell; M.J. Yzuel |

|
|
Title |
Using mathematical morphology to determine left ventricular contours. |
Type |
Journal |
|
Year |
1993 |
Publication  |
Physics in Medicine and Biology. |
Abbreviated Journal |
|
|
|
Volume |
38 |
Issue |
12 |
Pages |
1877––1894 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ PSC1993 |
Serial |
146 |
|
Permanent link to this record |
|
|
|
|
Author |
Hannes Mueller; Andre Groeger; Jonathan Hersh; Andrea Matranga; Joan Serrat |


|
|
Title |
Monitoring war destruction from space using machine learning |
Type |
Journal Article |
|
Year |
2021 |
Publication  |
Proceedings of the National Academy of Sciences of the United States of America |
Abbreviated Journal |
PNAS |
|
|
Volume |
118 |
Issue |
23 |
Pages |
e2025400118 |
|
|
Keywords |
|
|
|
Abstract |
Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MGH2021 |
Serial |
3584 |
|
Permanent link to this record |
|
|
|
|
Author |
Javier Marin; Sergio Escalera |


|
|
Title |
SSSGAN: Satellite Style and Structure Generative Adversarial Networks |
Type |
Journal Article |
|
Year |
2021 |
Publication  |
Remote Sensing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
19 |
Pages |
3984 |
|
|
Keywords |
|
|
|
Abstract |
This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ MaE2021 |
Serial |
3651 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira |


|
|
Title |
Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Robotics and Autonomous Systems |
Abbreviated Journal |
RAS |
|
|
Volume |
83 |
Issue |
|
Pages |
312-325 |
|
|
Keywords |
Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives |
|
|
Abstract |
When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier B.V. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086, 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @OSS2016a |
Serial |
2806 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel Sappa; Cristhian A. Aguilera-Carrasco; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla; Ricardo Toledo |


|
|
Title |
Monocular visual odometry: A cross-spectral image fusion based approach |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Robotics and Autonomous Systems |
Abbreviated Journal |
RAS |
|
|
Volume |
85 |
Issue |
|
Pages |
26-36 |
|
|
Keywords |
Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion |
|
|
Abstract |
This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier B.V. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;600.086; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @SAC2016 |
Serial |
2811 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira |


|
|
Title |
Incremental texture mapping for autonomous driving |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Robotics and Autonomous Systems |
Abbreviated Journal |
RAS |
|
|
Volume |
84 |
Issue |
|
Pages |
113-128 |
|
|
Keywords |
Scene reconstruction; Autonomous driving; Texture mapping |
|
|
Abstract |
Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OSS2016b |
Serial |
2912 |
|
Permanent link to this record |
|
|
|
|
Author |
Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Aftab Alam; Rosie Campbell; Petrus J Gerrits; Jonas Gregorio de Souza; Afifa Khan; Maria Suarez Moreno; Jack Tomaney; Rebecca C Roberts; Cameron A Petrie |


|
|
Title |
Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan |
Type |
Journal Article |
|
Year |
2023 |
Publication  |
Scientific Reports |
Abbreviated Journal |
ScR |
|
|
Volume |
13 |
Issue |
|
Pages |
11257 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few. Historical maps offer a window onto disappearing landscapes where many historical and archaeological elements that no longer exist today are depicted. The algorithms focus on the detection and shape extraction of mound features with high probability of being archaeological settlements, mounds being one of the most commonly documented archaeological features to be found in the Survey of India historical map series, although not necessarily recognised as such at the time of surveying. Mound features with high archaeological potential are most commonly depicted through hachures or contour-equivalent form-lines, therefore, an algorithm has been designed to detect each of those features. Our proposed approach addresses two of the most common issues in archaeological automated survey, the low-density of archaeological features to be detected, and the small amount of training data available. It has been applied to all types of maps available of the historic 1″ to 1-mile series, thus increasing the complexity of the detection. Moreover, the inclusion of synthetic data, along with a Curriculum Learning strategy, has allowed the algorithm to better understand what the mound features look like. Likewise, a series of filters based on topographic setting, form, and size have been applied to improve the accuracy of the models. The resulting algorithms have a recall value of 52.61% and a precision of 82.31% for the hachure mounds, and a recall value of 70.80% and a precision of 70.29% for the form-line mounds, which allowed the detection of nearly 6000 mound features over an area of 470,500 km2, the largest such approach to have ever been applied. If we restrict our focus to the maps most similar to those used in the algorithm training, we reach recall values greater than 60% and precision values greater than 90%. This approach has shown the potential to implement an adaptive algorithm that allows, after a small amount of retraining with data detected from a new map, a better general mound feature detection in the same map. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MSIAU;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ BOL2023 |
Serial |
3976 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristhian Aguilera; Fernando Barrera; Felipe Lumbreras; Angel Sappa; Ricardo Toledo |


|
|
Title |
Multispectral Image Feature Points |
Type |
Journal Article |
|
Year |
2012 |
Publication  |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
12 |
Issue |
9 |
Pages |
12661-12672 |
|
|
Keywords |
multispectral image descriptor; color and infrared images; feature point descriptor |
|
|
Abstract |
Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ ABL2012 |
Serial |
2154 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa |

|
|
Title |
Feature Point Descriptors: Infrared and Visible Spectra |
Type |
Journal Article |
|
Year |
2014 |
Publication  |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
14 |
Issue |
2 |
Pages |
3690-3701 |
|
|
Keywords |
|
|
|
Abstract |
This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCA2014a |
Serial |
2474 |
|
Permanent link to this record |
|
|
|
|
Author |
Alejandro Gonzalez Alzate; Zhijie Fang; Yainuvis Socarras; Joan Serrat; David Vazquez; Jiaolong Xu; Antonio Lopez |


|
|
Title |
Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
16 |
Issue |
6 |
Pages |
820 |
|
|
Keywords |
Pedestrian Detection; FIR |
|
|
Abstract |
Despite all the significant advances in pedestrian detection brought by computer vision for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting conditions under which such a detector should operate, namely day and night time. Recent research has shown that the combination of visible and non-visible imaging modalities may increase detection accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test images recorded at day and nighttime if trained (and tested) using (a) plain color images, (b) just infrared images and (c) both of them. In order to obtain results for the last item we propose an early fusion approach to combine features from both modalities. We base the evaluation on a new dataset we have built for this purpose as well as on the publicly available KAIST multispectral dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1424-8220 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.085; 600.076; 600.082; 601.281 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ GFS2016 |
Serial |
2754 |
|
Permanent link to this record |