toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost van de Weijer; Andrew Bagdanov; Antonio Lopez; Michael Felsberg edit   pdf
doi  openurl
  Title Coloring Action Recognition in Still Images Type Journal Article
  Year 2013 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 105 Issue 3 Pages 205-221  
  Keywords  
  Abstract In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes (up) CIC; ADAS; 600.057; 600.048 Approved no  
  Call Number Admin @ si @ KRW2013 Serial 2285  
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 3 Pages 223-234  
  Keywords Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation  
  Abstract The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ ART2015 Serial 2679  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Sergi Robles; Gemma Sanchez edit  doi
openurl 
  Title CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 1 Pages 15-30  
  Keywords  
  Abstract Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HRR2015 Serial 2567  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez edit   pdf
doi  openurl
  Title Statistical Segmentation and Structural Recognition for Floor Plan Interpretation Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 3 Pages 221-237  
  Keywords  
  Abstract A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number HSL2014 Serial 2370  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 2 Pages 545–555  
  Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization  
  Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no  
  Call Number Admin @ si @ RAT2015a Serial 2544  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit  doi
openurl 
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume Issue Pages  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.084 Approved no  
  Call Number Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Katerine Diaz edit   pdf
doi  openurl
  Title Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness Type Journal Article
  Year 2018 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 77 Issue 11 Pages 13773-13798  
  Keywords Augmented reality; Document image matching; Educational applications  
  Abstract This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.084; 600.121; 600.118 Approved no  
  Call Number Admin @ si @ RCD2018 Serial 2996  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri edit   pdf
doi  openurl
  Title Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction Type Journal Article
  Year 2018 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 60 Issue 4 Pages 512-524  
  Keywords  
  Abstract This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.086; 600.130; 600.121; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018a Serial 3062  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate edit  url
openurl 
  Title Decremental generalized discriminative common vectors applied to images classification Type Journal Article
  Year 2017 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 131 Issue Pages 46-57  
  Keywords Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification  
  Abstract In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) DAG; ADAS; 600.118; 600.121 Approved no  
  Call Number Admin @ si @ DMH2017a Serial 3003  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 56 Issue Pages 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial 2588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: