toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey edit  doi
openurl 
  Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms Type Journal Article
  Year 2022 Publication Journal of Archaeological Science Abbreviated Journal JArchSci  
  Volume 148 Issue Pages 105654  
  Keywords  
  Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.  
  Address December 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU; MACO; 600.167;ADAS Approved no  
  Call Number Admin @ si @ BOL2022 Serial 3753  
Permanent link to this record
 

 
Author Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Aftab Alam; Rosie Campbell; Petrus J Gerrits; Jonas Gregorio de Souza; Afifa Khan; Maria Suarez Moreno; Jack Tomaney; Rebecca C Roberts; Cameron A Petrie edit  url
doi  openurl
  Title Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan Type Journal Article
  Year 2023 Publication Scientific Reports Abbreviated Journal ScR  
  Volume 13 Issue Pages 11257  
  Keywords  
  Abstract This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few. Historical maps offer a window onto disappearing landscapes where many historical and archaeological elements that no longer exist today are depicted. The algorithms focus on the detection and shape extraction of mound features with high probability of being archaeological settlements, mounds being one of the most commonly documented archaeological features to be found in the Survey of India historical map series, although not necessarily recognised as such at the time of surveying. Mound features with high archaeological potential are most commonly depicted through hachures or contour-equivalent form-lines, therefore, an algorithm has been designed to detect each of those features. Our proposed approach addresses two of the most common issues in archaeological automated survey, the low-density of archaeological features to be detected, and the small amount of training data available. It has been applied to all types of maps available of the historic 1″ to 1-mile series, thus increasing the complexity of the detection. Moreover, the inclusion of synthetic data, along with a Curriculum Learning strategy, has allowed the algorithm to better understand what the mound features look like. Likewise, a series of filters based on topographic setting, form, and size have been applied to improve the accuracy of the models. The resulting algorithms have a recall value of 52.61% and a precision of 82.31% for the hachure mounds, and a recall value of 70.80% and a precision of 70.29% for the form-line mounds, which allowed the detection of nearly 6000 mound features over an area of 470,500 km2, the largest such approach to have ever been applied. If we restrict our focus to the maps most similar to those used in the algorithm training, we reach recall values greater than 60% and precision values greater than 90%. This approach has shown the potential to implement an adaptive algorithm that allows, after a small amount of retraining with data detected from a new map, a better general mound feature detection in the same map.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU;ADAS Approved no  
  Call Number Admin @ si @ BOL2023 Serial 3976  
Permanent link to this record
 

 
Author Henry Velesaca; Gisel Bastidas-Guacho; Mohammad Rouhani; Angel Sappa edit  url
openurl 
  Title Multimodal image registration techniques: a comprehensive survey Type Journal Article
  Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume Issue Pages  
  Keywords  
  Abstract This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU;ADAS Approved no  
  Call Number Admin @ si @ VBR2024 Serial 3997  
Permanent link to this record
 

 
Author Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas Type Journal Article
  Year 2011 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal JIRC  
  Volume 64 Issue 3-4 Pages 625-649  
  Keywords  
  Abstract Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-0296 ISBN Medium  
  Area Expedition Conference  
  Notes (up) RV;ADAS Approved no  
  Call Number Admin @ si @ RGA2011 Serial 1728  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras edit  openurl
  Title Aprendiendo a recrear la realidad en 3D Type Journal
  Year 2008 Publication UAB Divulga, Revista de divulgacion cientifica Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) spreading;ADAS Approved no  
  Call Number ADAS @ adas @ JSL2008b Serial 1472  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: