|
Records |
Links |
|
Author |
P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa |
|
|
Title |
Feature Point Descriptors: Infrared and Visible Spectra |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
14 |
Issue |
2 |
Pages |
3690-3701 |
|
|
Keywords |
|
|
|
Abstract |
This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCA2014a |
Serial |
2474 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Efficient segmentation-free keyword spotting in historical document collections |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
48 |
Issue |
2 |
Pages |
545–555 |
|
|
Keywords |
Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization |
|
|
Abstract |
In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015a |
Serial |
2544 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Angel Sappa; Victor Santos |
|
|
Title |
A probabilistic approach for color correction in image mosaicking applications |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
14 |
Issue |
2 |
Pages |
508 - 523 |
|
|
Keywords |
Color correction; image mosaicking; color transfer; color palette mapping functions |
|
|
Abstract |
Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OSS2015b |
Serial |
2554 |
|
Permanent link to this record |
|
|
|
|
Author |
Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda |
|
|
Title |
PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities |
Type |
Journal |
|
Year |
2015 |
Publication |
Journal of Technology and Science Education |
Abbreviated Journal |
JOTSE |
|
|
Volume |
5 |
Issue |
2 |
Pages |
87-96 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ADAS; 600.076; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MRG2015 |
Serial |
2608 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez |
|
|
Title |
Hierarchical Adaptive Structural SVM for Domain Adaptation |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
119 |
Issue |
2 |
Pages |
159-178 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.085; 600.082; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ XRV2016 |
Serial |
2669 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez |
|
|
Title |
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Sensors – Special Issue on “Machine Learning for Autonomous Driving Perception and Prediction” |
Abbreviated Journal |
SENS |
|
|
Volume |
23 |
Issue |
2 |
Pages |
621 |
|
|
Keywords |
Domain adaptation; semi-supervised learning; Semantic segmentation; Autonomous driving |
|
|
Abstract |
Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic
segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall
procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our
procedure shows improvements ranging from ∼13 to ∼26 mIoU points over baselines, so establishing new state-of-the-art results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVL2023 |
Serial |
3705 |
|
Permanent link to this record |
|
|
|
|
Author |
Gemma Rotger; Francesc Moreno-Noguer; Felipe Lumbreras; Antonio Agudo |
|
|
Title |
Detailed 3D face reconstruction from a single RGB image |
Type |
Journal |
|
Year |
2019 |
Publication |
Journal of WSCG |
Abbreviated Journal |
JWSCG |
|
|
Volume |
27 |
Issue |
2 |
Pages |
103-112 |
|
|
Keywords |
3D Wrinkle Reconstruction; Face Analysis, Optimization. |
|
|
Abstract |
This paper introduces a method to obtain a detailed 3D reconstruction of facial skin from a single RGB image.
To this end, we propose the exclusive use of an input image without requiring any information about the observed material nor training data to model the wrinkle properties. They are detected and characterized directly from the image via a simple and effective parametric model, determining several features such as location, orientation, width, and height. With these ingredients, we propose to minimize a photometric error to retrieve the final detailed 3D map, which is initialized by current techniques based on deep learning. In contrast with other approaches, we only require estimating a depth parameter, making our approach fast and intuitive. Extensive experimental evaluation is presented in a wide variety of synthetic and real images, including different skin properties and facial
expressions. In all cases, our method outperforms the current approaches regarding 3D reconstruction accuracy, providing striking results for both large and fine wrinkles. |
|
|
Address |
2019/11 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MSIAU; 600.086; 600.130; 600.122;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3708 |
|
Permanent link to this record |
|
|
|
|
Author |
M. Altillawi; S. Li; S.M. Prakhya; Z. Liu; Joan Serrat |
|
|
Title |
Implicit Learning of Scene Geometry From Poses for Global Localization |
Type |
Journal Article |
|
Year |
2024 |
Publication |
IEEE Robotics and Automation Letters |
Abbreviated Journal |
ROBOTAUTOMLET |
|
|
Volume |
9 |
Issue |
2 |
Pages |
955-962 |
|
|
Keywords |
Localization; Localization and mapping; Deep learning for visual perception; Visual learning |
|
|
Abstract |
Global visual localization estimates the absolute pose of a camera using a single image, in a previously mapped area. Obtaining the pose from a single image enables many robotics and augmented/virtual reality applications. Inspired by latest advances in deep learning, many existing approaches directly learn and regress 6 DoF pose from an input image. However, these methods do not fully utilize the underlying scene geometry for pose regression. The challenge in monocular relocalization is the minimal availability of supervised training data, which is just the corresponding 6 DoF poses of the images. In this letter, we propose to utilize these minimal available labels (i.e., poses) to learn the underlying 3D geometry of the scene and use the geometry to estimate the 6 DoF camera pose. We present a learning method that uses these pose labels and rigid alignment to learn two 3D geometric representations ( X, Y, Z coordinates ) of the scene, one in camera coordinate frame and the other in global coordinate frame. Given a single image, it estimates these two 3D scene representations, which are then aligned to estimate a pose that matches the pose label. This formulation allows for the active inclusion of additional learning constraints to minimize 3D alignment errors between the two 3D scene representations, and 2D re-projection errors between the 3D global scene representation and 2D image pixels, resulting in improved localization accuracy. During inference, our model estimates the 3D scene geometry in camera and global frames and aligns them rigidly to obtain pose in real-time. We evaluate our work on three common visual localization datasets, conduct ablation studies, and show that our method exceeds state-of-the-art regression methods' pose accuracy on all datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2377-3766 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3857 |
|
Permanent link to this record |
|
|
|
|
Author |
Javier Marin; Sergio Escalera |
|
|
Title |
SSSGAN: Satellite Style and Structure Generative Adversarial Networks |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Remote Sensing |
Abbreviated Journal |
|
|
|
Volume |
13 |
Issue |
19 |
Pages |
3984 |
|
|
Keywords |
|
|
|
Abstract |
This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ MaE2021 |
Serial |
3651 |
|
Permanent link to this record |
|
|
|
|
Author |
J.S. Cope; P.Remagnino; S.Mannan; Katerine Diaz; Francesc J. Ferri; P.Wilkin |
|
|
Title |
Reverse Engineering Expert Visual Observations: From Fixations To The Learning Of Spatial Filters With A Neural-Gas Algorithm |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Expert Systems with Applications |
Abbreviated Journal |
EXWA |
|
|
Volume |
40 |
Issue |
17 |
Pages |
6707-6712 |
|
|
Keywords |
Neural gas; Expert vision; Eye-tracking; Fixations |
|
|
Abstract |
Human beings can become experts in performing specific vision tasks, for example, doctors analysing medical images, or botanists studying leaves. With sufficient knowledge and experience, people can become very efficient at such tasks. When attempting to perform these tasks with a machine vision system, it would be highly beneficial to be able to replicate the process which the expert undergoes. Advances in eye-tracking technology can provide data to allow us to discover the manner in which an expert studies an image. This paper presents a first step towards utilizing these data for computer vision purposes. A growing-neural-gas algorithm is used to learn a set of Gabor filters which give high responses to image regions which a human expert fixated on. These filters can then be used to identify regions in other images which are likely to be useful for a given vision task. The algorithm is evaluated by learning filters for locating specific areas of plant leaves. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4174 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRM2013 |
Serial |
2438 |
|
Permanent link to this record |