|
Records |
Links |
|
Author |
M. Olivera; Angel Sappa; Victor Santos |

|
|
Title |
A probabilistic approach for color correction in image mosaicking applications |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
14 |
Issue |
2 |
Pages |
508 - 523 |
|
|
Keywords |
Color correction; image mosaicking; color transfer; color palette mapping functions |
|
|
Abstract |
Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ OSS2015b |
Serial |
2554 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa |

|
|
Title |
Multimodal Inverse Perspective Mapping |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Information Fusion |
Abbreviated Journal |
IF |
|
|
Volume |
24 |
Issue |
|
Pages |
108–121 |
|
|
Keywords |
Inverse perspective mapping; Multimodal sensor fusion; Intelligent vehicles |
|
|
Abstract |
Over the past years, inverse perspective mapping has been successfully applied to several problems in the field of Intelligent Transportation Systems. In brief, the method consists of mapping images to a new coordinate system where perspective effects are removed. The removal of perspective associated effects facilitates road and obstacle detection and also assists in free space estimation. There is, however, a significant limitation in the inverse perspective mapping: the presence of obstacles on the road disrupts the effectiveness of the mapping. The current paper proposes a robust solution based on the use of multimodal sensor fusion. Data from a laser range finder is fused with images from the cameras, so that the mapping is not computed in the regions where obstacles are present. As shown in the results, this considerably improves the effectiveness of the algorithm and reduces computation time when compared with the classical inverse perspective mapping. Furthermore, the proposed approach is also able to cope with several cameras with different lenses or image resolutions, as well as dynamic viewpoints. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ OSS2015c |
Serial |
2532 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira |


|
|
Title |
Incremental texture mapping for autonomous driving |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Robotics and Autonomous Systems |
Abbreviated Journal |
RAS |
|
|
Volume |
84 |
Issue |
|
Pages |
113-128 |
|
|
Keywords |
Scene reconstruction; Autonomous driving; Texture mapping |
|
|
Abstract |
Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ OSS2016b |
Serial |
2912 |
|
Permanent link to this record |
|
|
|
|
Author |
Monica Piñol; Angel Sappa; Ricardo Toledo |

|
|
Title |
Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume |
150 |
Issue |
A |
Pages |
106–115 |
|
|
Keywords |
Reinforcement learning; Q-learning; Bag of features; Descriptors |
|
|
Abstract |
This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ PST2015 |
Serial |
2473 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |

|
|
Title |
Efficient segmentation-free keyword spotting in historical document collections |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
48 |
Issue |
2 |
Pages |
545–555 |
|
|
Keywords |
Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization |
|
|
Abstract |
In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RAT2015a |
Serial |
2544 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Ramisa; David Aldavert; Shrihari Vasudevan; Ricardo Toledo; Ramon Lopez de Mantaras |

|
|
Title |
Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Journal of Intelligent and Robotic Systems |
Abbreviated Journal |
JIRC |
|
|
Volume |
68 |
Issue |
2 |
Pages |
185-208 |
|
|
Keywords |
|
|
|
Abstract |
This paper addresses visual object perception applied to mobile robotics. Being able to perceive household objects in unstructured environments is a key capability in order to make robots suitable to perform complex tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera with tight time constraints. The paper brings to attention some of the issues with applying three state of the art object recognition and detection methods in a mobile robotics scenario, and proposes methods to deal with windowing/segmentation. Thus, this work aims at evaluating the state-of-the-art in object perception in an attempt to develop a lightweight solution for mobile robotics use/research in typical indoor settings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-0296 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RAV2012 |
Serial |
2150 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa |

|
|
Title |
Feature Point Descriptors: Infrared and Visible Spectra |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
14 |
Issue |
2 |
Pages |
3690-3701 |
|
|
Keywords |
|
|
|
Abstract |
This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;600.055; 600.076 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RCA2014a |
Serial |
2474 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; J. Chazalon; Katerine Diaz |


|
|
Title |
Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
77 |
Issue |
11 |
Pages |
13773-13798 |
|
|
Keywords |
Augmented reality; Document image matching; Educational applications |
|
|
Abstract |
This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.084; 600.121; 600.118; 600.129 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RCD2018 |
Serial |
2996 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras |

|
|
Title |
Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Intelligent and Robotic Systems |
Abbreviated Journal |
JIRC |
|
|
Volume |
64 |
Issue |
3-4 |
Pages |
625-649 |
|
|
Keywords |
|
|
|
Abstract |
Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Netherlands |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0921-0296 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
RV;ADAS |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RGA2011 |
Serial |
1728 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa |


|
|
Title |
Multiple target tracking for intelligent headlights control |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
13 |
Issue |
2 |
Pages |
594-605 |
|
|
Keywords |
Intelligent Headlights |
|
|
Abstract |
Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number  |
Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g |
Serial |
1877 |
|
Permanent link to this record |