toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas Type Journal Article
  Year 2011 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal JIRC  
  Volume 64 Issue 3-4 Pages 625-649  
  Keywords  
  Abstract Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-0296 ISBN Medium  
  Area Expedition Conference  
  Notes RV;ADAS Approved no  
  Call Number (up) Admin @ si @ RGA2011 Serial 1728  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa edit   pdf
url  doi
openurl 
  Title Multiple target tracking for intelligent headlights control Type Journal Article
  Year 2012 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 13 Issue 2 Pages 594-605  
  Keywords Intelligent Headlights  
  Abstract Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g Serial 1877  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title Implicit Polynomial Representation through a Fast Fitting Error Estimation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 4 Pages 2089-2098  
  Keywords  
  Abstract Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ RoS2012b; ADAS @ adas @ Serial 1937  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title The Richer Representation the Better Registration Type Journal Article
  Year 2013 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 22 Issue 12 Pages 5036-5049  
  Keywords  
  Abstract In this paper, the registration problem is formulated as a point to model distance minimization. Unlike most of the existing works, which are based on minimizing a point-wise correspondence term, this formulation avoids the correspondence search that is time-consuming. In the first stage, the target set is described through an implicit function by employing a linear least squares fitting. This function can be either an implicit polynomial or an implicit B-spline from a coarse to fine representation. In the second stage, we show how the obtained implicit representation is used as an interface to convert point-to-point registration into point-to-implicit problem. Furthermore, we show that this registration distance is smooth and can be minimized through the Levengberg-Marquardt algorithm. All the formulations presented for both stages are compact and easy to implement. In addition, we show that our registration method can be handled using any implicit representation though some are coarse and others provide finer representations; hence, a tradeoff between speed and accuracy can be set by employing the right implicit function. Experimental results and comparisons in 2D and 3D show the robustness and the speed of convergence of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ RoS2013 Serial 2665  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa; E. Boyer edit  doi
openurl 
  Title Implicit B-Spline Surface Reconstruction Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 1 Pages 22 - 32  
  Keywords  
  Abstract This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number (up) Admin @ si @ RSB2015 Serial 2541  
Permanent link to this record
 

 
Author Arnau Ramisa; Adriana Tapus; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Robust Vision-Based Localization using Combinations of Local Feature Regions Detectors Type Journal Article
  Year 2009 Publication Autonomous Robots Abbreviated Journal AR  
  Volume 27 Issue 4 Pages 373-385  
  Keywords  
  Abstract This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°.
In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0929-5593 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ RTA2009 Serial 1245  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez edit  doi
openurl 
  Title Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models Type Journal Article
  Year 2019 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (up) Admin @ si @ SGC2019 Serial 3303  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Francisco Blanco; Manuel Valiente; Montserrat Lopez-Mesas edit  url
openurl 
  Title myStone: A system for automatic kidney stone classification Type Journal Article
  Year 2017 Publication Expert Systems with Applications Abbreviated Journal ESA  
  Volume 89 Issue Pages 41-51  
  Keywords Kidney stone; Optical device; Computer vision; Image classification  
  Abstract Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS: MSIAU; 603.046; 600.122; 600.118 Approved no  
  Call Number (up) Admin @ si @ SLB2017 Serial 3026  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez edit   pdf
doi  openurl
  Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 3 Pages 299-309  
  Keywords On-line quotation; STL format; Regression; Gaussian process  
  Abstract We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number (up) Admin @ si @ SLL2013; ADAS @ adas @ Serial 2161  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Idoia Ruiz edit  url
openurl 
  Title Learning to measure for preshipment garment sizing Type Journal Article
  Year 2018 Publication Measurement Abbreviated Journal MEASURE  
  Volume 130 Issue Pages 327-339  
  Keywords Apparel; Computer vision; Structured prediction; Regression  
  Abstract Clothing is still manually manufactured for the most part nowadays, resulting in discrepancies between nominal and real dimensions, and potentially ill-fitting garments. Hence, it is common in the apparel industry to manually perform measures at preshipment time. We present an automatic method to obtain such measures from a single image of a garment that speeds up this task. It is generic and extensible in the sense that it does not depend explicitly on the garment shape or type. Instead, it learns through a probabilistic graphical model to identify the different contour parts. Subsequently, a set of Lasso regressors, one per desired measure, can predict the actual values of the measures. We present results on a dataset of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining 1.17 and 1.22 cm of mean absolute error, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS: MSIAU; 600.122; 600.118 Approved no  
  Call Number (up) Admin @ si @ SLR2018 Serial 3128  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: