toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen edit   pdf
url  openurl
  Title Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type Journal Article
  Year 2018 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS J  
  Volume 138 Issue Pages 74-85  
  Keywords Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis  
  Abstract Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.106; 600.120;CIC;ADAS Approved no  
  Call Number Admin @ si @ RKW2018 Serial 3158  
Permanent link to this record
 

 
Author (up) Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title A Novel Space Variant Image Representation Type Journal Article
  Year 2013 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 47 Issue 1-2 Pages 48-59  
  Keywords Space-variant representation; Log-polar mapping; Onboard vision applications  
  Abstract Traditionally, in machine vision images are represented using cartesian coordinates with uniform sampling along the axes. On the contrary, biological vision systems represent images using polar coordinates with non-uniform sampling. For various advantages provided by space-variant representations many researchers are interested in space-variant computer vision. In this direction the current work proposes a novel and simple space variant representation of images. The proposed representation is compared with the classical log-polar mapping. The log-polar representation is motivated by biological vision having the characteristic of higher resolution at the fovea and reduced resolution at the periphery. On the contrary to the log-polar, the proposed new representation has higher resolution at the periphery and lower resolution at the fovea. Our proposal is proved to be a better representation in navigational scenarios such as driver assistance systems and robotics. The experimental results involve analysis of optical flow fields computed on both proposed and log-polar representations. Additionally, an egomotion estimation application is also shown as an illustrative example. The experimental analysis comprises results from synthetic as well as real sequences.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-9907 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 605.203; 601.215 Approved no  
  Call Number Admin @ si @ OnS2013a Serial 2243  
Permanent link to this record
 

 
Author (up) Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title Speed and Texture: An Empirical Study on Optical-Flow Accuracy in ADAS Scenarios Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 1 Pages 136-147  
  Keywords  
  Abstract IF: 3.064
Increasing mobility in everyday life has led to the concern for the safety of automotives and human life. Computer vision has become a valuable tool for developing driver assistance applications that target such a concern. Many such vision-based assisting systems rely on motion estimation, where optical flow has shown its potential. A variational formulation of optical flow that achieves a dense flow field involves a data term and regularization terms. Depending on the image sequence, the regularization has to appropriately be weighted for better accuracy of the flow field. Because a vehicle can be driven in different kinds of environments, roads, and speeds, optical-flow estimation has to be accurately computed in all such scenarios. In this paper, we first present the polar representation of optical flow, which is quite suitable for driving scenarios due to the possibility that it offers to independently update regularization factors in different directional components. Then, we study the influence of vehicle speed and scene texture on optical-flow accuracy. Furthermore, we analyze the relationships of these specific characteristics on a driving scenario (vehicle speed and road texture) with the regularization weights in optical flow for better accuracy. As required by the work in this paper, we have generated several synthetic sequences along with ground-truth flow fields.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ OnS2014a Serial 2386  
Permanent link to this record
 

 
Author (up) Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title Synthetic sequences and ground-truth flow field generation for algorithm validation Type Journal Article
  Year 2015 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 74 Issue 9 Pages 3121-3135  
  Keywords Ground-truth optical flow; Synthetic sequence; Algorithm validation  
  Abstract Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 601.215; 600.076 Approved no  
  Call Number Admin @ si @ OnS2014b Serial 2472  
Permanent link to this record
 

 
Author (up) Oscar Argudo; Marc Comino; Antonio Chica; Carlos Andujar; Felipe Lumbreras edit  url
openurl 
  Title Segmentation of aerial images for plausible detail synthesis Type Journal Article
  Year 2018 Publication Computers & Graphics Abbreviated Journal CG  
  Volume 71 Issue Pages 23-34  
  Keywords Terrain editing; Detail synthesis; Vegetation synthesis; Terrain rendering; Image segmentation  
  Abstract The visual enrichment of digital terrain models with plausible synthetic detail requires the segmentation of aerial images into a suitable collection of categories. In this paper we present a complete pipeline for segmenting high-resolution aerial images into a user-defined set of categories distinguishing e.g. terrain, sand, snow, water, and different types of vegetation. This segmentation-for-synthesis problem implies that per-pixel categories must be established according to the algorithms chosen for rendering the synthetic detail. This precludes the definition of a universal set of labels and hinders the construction of large training sets. Since artists might choose to add new categories on the fly, the whole pipeline must be robust against unbalanced datasets, and fast on both training and inference. Under these constraints, we analyze the contribution of common per-pixel descriptors, and compare the performance of state-of-the-art supervised learning algorithms. We report the findings of two user studies. The first one was conducted to analyze human accuracy when manually labeling aerial images. The second user study compares detailed terrains built using different segmentation strategies, including official land cover maps. These studies demonstrate that our approach can be used to turn digital elevation models into fully-featured, detailed terrains with minimal authoring efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-8493 ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.086; 600.118;ADAS Approved no  
  Call Number Admin @ si @ ACC2018 Serial 3147  
Permanent link to this record
 

 
Author (up) P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa edit  doi
openurl 
  Title Feature Point Descriptors: Infrared and Visible Spectra Type Journal Article
  Year 2014 Publication Sensors Abbreviated Journal SENS  
  Volume 14 Issue 2 Pages 3690-3701  
  Keywords  
  Abstract This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;600.055; 600.076 Approved no  
  Call Number Admin @ si @ RCA2014a Serial 2474  
Permanent link to this record
 

 
Author (up) Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester edit   pdf
url  openurl
  Title Multilocal Creaseness Measure Type Journal
  Year 2012 Publication The Insight Journal Abbreviated Journal IJ  
  Volume Issue Pages  
  Keywords Ridges, Valley, Creaseness, Structure Tensor, Skeleton,  
  Abstract This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission.  
  Address  
  Corporate Author Alma IT Systems Thesis  
  Publisher Place of Publication Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ VGL2012 Serial 1840  
Permanent link to this record
 

 
Author (up) Sudeep Katakol; Basem Elbarashy; Luis Herranz; Joost Van de Weijer; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Distributed Learning and Inference with Compressed Images Type Journal Article
  Year 2021 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 30 Issue Pages 3069 - 3083  
  Keywords  
  Abstract Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.120; 600.118;CIC Approved no  
  Call Number Admin @ si @ KEH2021 Serial 3543  
Permanent link to this record
 

 
Author (up) T. Mouats; N. Aouf; Angel Sappa; Cristhian A. Aguilera-Carrasco; Ricardo Toledo edit  doi
openurl 
  Title Multi-Spectral Stereo Odometry Type Journal Article
  Year 2015 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 16 Issue 3 Pages 1210-1224  
  Keywords Egomotion estimation; feature matching; multispectral odometry (MO); optical flow; stereo odometry; thermal imagery  
  Abstract In this paper, we investigate the problem of visual odometry for ground vehicles based on the simultaneous utilization of multispectral cameras. It encompasses a stereo rig composed of an optical (visible) and thermal sensors. The novelty resides in the localization of the cameras as a stereo setup rather
than two monocular cameras of different spectrums. To the best of our knowledge, this is the first time such task is attempted. Log-Gabor wavelets at different orientations and scales are used to extract interest points from both images. These are then described using a combination of frequency and spatial information within the local neighborhood. Matches between the pairs of multimodal images are computed using the cosine similarity function based
on the descriptors. Pyramidal Lucas–Kanade tracker is also introduced to tackle temporal feature matching within challenging sequences of the data sets. The vehicle egomotion is computed from the triangulated 3-D points corresponding to the matched features. A windowed version of bundle adjustment incorporating
Gauss–Newton optimization is utilized for motion estimation. An outlier removal scheme is also included within the framework to deal with outliers. Multispectral data sets were generated and used as test bed. They correspond to real outdoor scenarios captured using our multimodal setup. Finally, detailed results validating the proposed strategy are illustrated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ MAS2015a Serial 2533  
Permanent link to this record
 

 
Author (up) Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez edit   pdf
url  doi
openurl 
  Title Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation Type Journal Article
  Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 96 Issue 1 Pages 83-102  
  Keywords  
  Abstract The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimpli ed model since multiple classes can be reasonably expected to appear within large regions. This simpli ed model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an e ective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ISE;CIC;ADAS Approved no  
  Call Number Admin @ si @ BGW2012 Serial 1718  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: