toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 12 Pages 2367-2380  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract (down) The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no  
  Call Number ADAS @ adas @ XRV2014b Serial 2436  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract (down) Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  openurl
  Title Structure-preserving smoothing of biomedical images Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 9 Pages 1842-1851  
  Keywords Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography  
  Abstract (down) Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ GHB2011 Serial 1526  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
url  openurl
  Title An iterative multiresolution scheme for SFM with missing data Type Journal Article
  Year 2009 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 34 Issue 3 Pages 240–258  
  Keywords  
  Abstract (down) Several techniques have been proposed for tackling the Structure from Motion problem through factorization in the case of missing data. However, when the percentage of unknown data is high, most of them may not perform as well as expected. Focussing on this problem, an iterative multiresolution scheme, which aims at recovering missing entries in the originally given input matrix, is proposed. Information recovered following a coarse-to-fine strategy is used for filling in the missing entries. The objective is to recover, as much as possible, missing data in the given matrix.
Thus, when a factorization technique is applied to the partially or totally filled in matrix, instead of to the originally given input one, better results will be obtained. An evaluation study about the robustness to missing and noisy data is reported.
Experimental results obtained with synthetic and real video sequences are presented to show the viability of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2009a Serial 1163  
Permanent link to this record
 

 
Author Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez edit  url
openurl 
  Title Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models Type Journal Article
  Year 2023 Publication Sensors – Special Issue on “Machine Learning for Autonomous Driving Perception and Prediction” Abbreviated Journal SENS  
  Volume 23 Issue 2 Pages 621  
  Keywords Domain adaptation; semi-supervised learning; Semantic segmentation; Autonomous driving  
  Abstract (down) Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic
segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall
procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our
procedure shows improvements ranging from ∼13 to ∼26 mIoU points over baselines, so establishing new state-of-the-art results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; no proj Approved no  
  Call Number Admin @ si @ GVL2023 Serial 3705  
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa edit  doi
openurl 
  Title Synthetic sequences and ground-truth flow field generation for algorithm validation Type Journal Article
  Year 2015 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 74 Issue 9 Pages 3121-3135  
  Keywords Ground-truth optical flow; Synthetic sequence; Algorithm validation  
  Abstract (down) Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-7501 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 601.215; 600.076 Approved no  
  Call Number Admin @ si @ OnS2014b Serial 2472  
Permanent link to this record
 

 
Author Idoia Ruiz; Joan Serrat edit  doi
openurl 
  Title Hierarchical Novelty Detection for Traffic Sign Recognition Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 12 Pages 4389  
  Keywords Novelty detection; hierarchical classification; deep learning; traffic sign recognition; autonomous driving; computer vision  
  Abstract (down) Recent works have made significant progress in novelty detection, i.e., the problem of detecting samples of novel classes, never seen during training, while classifying those that belong to known classes. However, the only information this task provides about novel samples is that they are unknown. In this work, we leverage hierarchical taxonomies of classes to provide informative outputs for samples of novel classes. We predict their closest class in the taxonomy, i.e., its parent class. We address this problem, known as hierarchical novelty detection, by proposing a novel loss, namely Hierarchical Cosine Loss that is designed to learn class prototypes along with an embedding of discriminative features consistent with the taxonomy. We apply it to traffic sign recognition, where we predict the parent class semantics for new types of traffic signs. Our model beats state-of-the art approaches on two large scale traffic sign benchmarks, Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and MTSD, our approach is able to detect novel samples at the correct nodes of the hierarchy with 81% and 36% of accuracy, respectively, at 80% known class accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.154 Approved no  
  Call Number Admin @ si @ RuS2022 Serial 3684  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Sergi Robles; Gemma Sanchez edit  doi
openurl 
  Title CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 1 Pages 15-30  
  Keywords  
  Abstract (down) Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HRR2015 Serial 2567  
Permanent link to this record
 

 
Author Jiaolong Xu; Liang Xiao; Antonio Lopez edit   pdf
doi  openurl
  Title Self-supervised Domain Adaptation for Computer Vision Tasks Type Journal Article
  Year 2019 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 7 Issue Pages 156694 - 156706  
  Keywords  
  Abstract (down) Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ XXL2019 Serial 3302  
Permanent link to this record
 

 
Author Gabriel Villalonga; Antonio Lopez edit   pdf
doi  openurl
  Title Co-Training for On-Board Deep Object Detection Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume Issue Pages 194441 - 194456  
  Keywords  
  Abstract (down) Providing ground truth supervision to train visual models has been a bottleneck over the years, exacerbated by domain shifts which degenerate the performance of such models. This was the case when visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented performance gains, the problem remains open within the deep learning paradigm due to its data-hungry nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images. Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article, we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images, so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention to a scenario involving domain shift; in particular, when we have automatically generated virtual-world images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are particularly interested in using co-training for deep object detection in the context of driver assistance systems and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ ViL2020 Serial 3488  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: