toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
doi  openurl
  Title Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal (down) RAS  
  Volume 83 Issue Pages 312-325  
  Keywords Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives  
  Abstract When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086, 600.076 Approved no  
  Call Number Admin @ si @OSS2016a Serial 2806  
Permanent link to this record
 

 
Author Angel Sappa; Cristhian A. Aguilera-Carrasco; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris Vintimilla; Ricardo Toledo edit   pdf
doi  openurl
  Title Monocular visual odometry: A cross-spectral image fusion based approach Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal (down) RAS  
  Volume 85 Issue Pages 26-36  
  Keywords Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion  
  Abstract This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;600.086; 600.076 Approved no  
  Call Number Admin @ si @SAC2016 Serial 2811  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
url  openurl
  Title Incremental texture mapping for autonomous driving Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal (down) RAS  
  Volume 84 Issue Pages 113-128  
  Keywords Scene reconstruction; Autonomous driving; Texture mapping  
  Abstract Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086 Approved no  
  Call Number Admin @ si @ OSS2016b Serial 2912  
Permanent link to this record
 

 
Author A. Pujol; Jordi Vitria; Felipe Lumbreras; Juan J. Villanueva edit  doi
openurl 
  Title Topological principal component analysis for face encoding and recognition Type Journal Article
  Year 2001 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 22 Issue 6-7 Pages 769–776  
  Keywords  
  Abstract IF: 0.552  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;OR;MV Approved no  
  Call Number ADAS @ adas @ PVL2001 Serial 155  
Permanent link to this record
 

 
Author Jaume Amores; Petia Radeva edit  url
doi  openurl
  Title Registration and Retrieval of Highly Elastic Bodies using Contextual Information Type Journal Article
  Year 2005 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 26 Issue 11 Pages 1720–1731  
  Keywords  
  Abstract IF: 1.138  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ AmR2005b Serial 592  
Permanent link to this record
 

 
Author Jaume Amores; N. Sebe; Petia Radeva edit  doi
openurl 
  Title Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 27 Issue 3 Pages 201–209  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ ASR2006 Serial 643  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  doi
openurl 
  Title Rigid and Non-rigid Face Motion Tracking by Aligning Texture Maps and Stereo 3D Models Type Journal Article
  Year 2007 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 28 Issue 15 Pages 2116-2126  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2007c Serial 877  
Permanent link to this record
 

 
Author Fadi Dornaika; Angel Sappa edit  doi
openurl 
  Title Instantaneous 3D motion from image derivatives using the Least Trimmed Square Regression Type Journal Article
  Year 2009 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 30 Issue 5 Pages 535–543  
  Keywords  
  Abstract This paper presents a new technique to the instantaneous 3D motion estimation. The main contributions are as follows. First, we show that the 3D camera or scene velocity can be retrieved from image derivatives only assuming that the scene contains a dominant plane. Second, we propose a new robust algorithm that simultaneously provides the Least Trimmed Square solution and the percentage of inliers-the non-contaminated data. Experiments on both synthetic and real image sequences demonstrated the effectiveness of the developed method. Those experiments show that the new robust approach can outperform classical robust schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ DoS2009a Serial 1115  
Permanent link to this record
 

 
Author Fernando Barrera; Felipe Lumbreras; Angel Sappa edit  url
doi  openurl
  Title Multispectral Piecewise Planar Stereo using Manhattan-World Assumption Type Journal Article
  Year 2013 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 34 Issue 1 Pages 52-61  
  Keywords Multispectral stereo rig; Dense disparity maps from multispectral stereo; Color and infrared images  
  Abstract This paper proposes a new framework for extracting dense disparity maps from a multispectral stereo rig. The system is constructed with an infrared and a color camera. It is intended to explore novel multispectral stereo matching approaches that will allow further extraction of semantic information. The proposed framework consists of three stages. Firstly, an initial sparse disparity map is generated by using a cost function based on feature matching in a multiresolution scheme. Then, by looking at the color image, a set of planar hypotheses is defined to describe the surfaces on the scene. Finally, the previous stages are combined by reformulating the disparity computation as a global minimization problem. The paper has two main contributions. The first contribution combines mutual information with a shape descriptor based on gradient in a multiresolution scheme. The second contribution, which is based on the Manhattan-world assumption, extracts a dense disparity representation using the graph cut algorithm. Experimental results in outdoor scenarios are provided showing the validity of the proposed framework.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.054; 600.055; 605.203 Approved no  
  Call Number Admin @ si @ BLS2013 Serial 2245  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal (down) PRL  
  Volume 51 Issue Pages 16-22  
  Keywords  
  Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: