toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Gema Rotger; Felipe Lumbreras; Francesc Moreno-Noguer; Antonio Agudo edit   pdf
doi  openurl
  Title (up) 2D-to-3D Facial Expression Transfer Type Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2008 - 2013  
  Keywords  
  Abstract Automatically changing the expression and physical features of a face from an input image is a topic that has been traditionally tackled in a 2D domain. In this paper, we bring this problem to 3D and propose a framework that given an
input RGB video of a human face under a neutral expression, initially computes his/her 3D shape and then performs a transfer to a new and potentially non-observed expression. For this purpose, we parameterize the rest shape –obtained from standard factorization approaches over the input video– using a triangular
mesh which is further clustered into larger macro-segments. The expression transfer problem is then posed as a direct mapping between this shape and a source shape, such as the blend shapes of an off-the-shelf 3D dataset of human facial expressions. The mapping is resolved to be geometrically consistent between 3D models by requiring points in specific regions to map on semantic
equivalent regions. We validate the approach on several synthetic and real examples of input faces that largely differ from the source shapes, yielding very realistic expression transfers even in cases with topology changes, such as a synthetic video sequence of a single-eyed cyclops.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes ADAS; 600.086; 600.130; 600.118 Approved no  
  Call Number Admin @ si @ RLM2018 Serial 3232  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title (up) 3D Scene Priors for Road Detection Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 57–64  
  Keywords road detection  
  Abstract Vision-based road detection is important in different areas of computer vision such as autonomous driving, car collision warning and pedestrian crossing detection. However, current vision-based road detection methods are usually based on low-level features and they assume structured roads, road homogeneity, and uniform lighting conditions. Therefore, in this paper, contextual 3D information is used in addition to low-level cues. Low-level photometric invariant cues are derived from the appearance of roads. Contextual cues used include horizon lines, vanishing points, 3D scene layout and 3D road stages. Moreover, temporal road cues are included. All these cues are sensitive to different imaging conditions and hence are considered as weak cues. Therefore, they are combined to improve the overall performance of the algorithm. To this end, the low-level, contextual and temporal cues are combined in a Bayesian framework to classify road sequences. Large scale experiments on road sequences show that the road detection method is robust to varying imaging conditions, road types, and scenarios (tunnels, urban and highway). Further, using the combined cues outperforms all other individual cues. Finally, the proposed method provides highest road detection accuracy when compared to state-of-the-art methods.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2010a Serial 1302  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; German Ros; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title (up) 3D-Guided Multiscale Sliding Window for Pedestrian Detection Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages 560-568  
  Keywords Pedestrian Detection  
  Abstract The most relevant modules of a pedestrian detector are the candidate generation and the candidate classification. The former aims at presenting image windows to the latter so that they are classified as containing a pedestrian or not. Much attention has being paid to the classification module, while candidate generation has mainly relied on (multiscale) sliding window pyramid. However, candidate generation is critical for achieving real-time. In this paper we assume a context of autonomous driving based on stereo vision. Accordingly, we evaluate the effect of taking into account the 3D information (derived from the stereo) in order to prune the hundred of thousands windows per image generated by classical pyramidal sliding window. For our study we use a multimodal (RGB, disparity) and multi-descriptor (HOG, LBP, HOG+LBP) holistic ensemble based on linear SVM. Evaluation on data from the challenging KITTI benchmark suite shows the effectiveness of using 3D information to dramatically reduce the number of candidate windows, even improving the overall pedestrian detection accuracy.  
  Address Santiago de Compostela; España; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IbPRIA  
  Notes ADAS; 600.076; 600.057; 600.054 Approved no  
  Call Number ADAS @ adas @ GVR2015 Serial 2585  
Permanent link to this record
 

 
Author Angel Valencia; Roger Idrovo; Angel Sappa; Douglas Plaza; Daniel Ochoa edit   pdf
openurl 
  Title (up) A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers Type Conference Article
  Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In general, robot grasping approaches are based on the usage of multi-finger grippers. However, when large size objects need to be manipulated vacuum grippers are preferred, instead of finger based grippers. This paper aims to estimate the best picking place for a two suction cups vacuum gripper,
when planar objects with an unknown size and geometry are considered. The approach is based on the estimation of geometric properties of object’s shape from a partial cloud of points (a single 3D view), in such a way that combine with considerations of a theoretical model to generate an optimal contact point
that minimizes the vacuum force needed to guarantee a grasp.
Experimental results in real scenarios are presented to show the validity of the proposed approach.
 
  Address San Sebastian; Spain; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECMSM  
  Notes ADAS; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ VIS2017 Serial 2917  
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville edit   pdf
openurl 
  Title (up) A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Conference Article
  Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Medical Imaging  
  Abstract Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number ADAS @ adas @ VBS2017a Serial 2880  
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate edit   pdf
doi  isbn
openurl 
  Title (up) A Complete Confidence Framework for Optical Flow Type Conference Article
  Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal  
  Volume 7584 Issue 2 Pages 124-133  
  Keywords Optical flow, confidence measures, sparsification plots, error prediction plots  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-33867-0 Medium  
  Area Expedition Conference ECCVW  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGH2012b Serial 1991  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title (up) A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title (up) A Fast accurate Implicit Polynomial Fitting Approach Type Conference Article
  Year 2010 Publication 17th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 1429–1432  
  Keywords  
  Abstract This paper presents a novel hybrid approach that combines state of the art fitting algorithms: algebraic-based and geometric-based. It consists of two steps; first, the 3L algorithm is used as an initialization and then, the obtained result, is improved through a geometric approach. The adopted geometric approach is based on a distance estimation that avoids costly search for the real orthogonal distance. Experimental results are presented as well as quantitative comparisons.  
  Address Hong-Kong  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1522-4880 ISBN 978-1-4244-7992-4 Medium  
  Area Expedition Conference ICIP  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RoS2010b Serial 1359  
Permanent link to this record
 

 
Author Ariel Amato; Felipe Lumbreras; Angel Sappa edit   pdf
openurl 
  Title (up) A General-purpose Crowdsourcing Platform for Mobile Devices Type Conference Article
  Year 2014 Publication 9th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume 3 Issue Pages 211-215  
  Keywords Crowdsourcing Platform; Mobile Crowdsourcing  
  Abstract This paper presents details of a general purpose micro-task on-demand platform based on the crowdsourcing philosophy. This platform was specifically developed for mobile devices in order to exploit the strengths of such devices; namely: i) massivity, ii) ubiquity and iii) embedded sensors. The combined use of mobile platforms and the crowdsourcing model allows to tackle from the simplest to the most complex tasks. Users experience is the highlighted feature of this platform (this fact is extended to both task-proposer and tasksolver). Proper tools according with a specific task are provided to a task-solver in order to perform his/her job in a simpler, faster and appealing way. Moreover, a task can be easily submitted by just selecting predefined templates, which cover a wide range of possible applications. Examples of its usage in computer vision and computer games are provided illustrating the potentiality of the platform.  
  Address Lisboa; Portugal; January 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes ISE; ADAS; 600.054; 600.055; 600.076; 600.078 Approved no  
  Call Number Admin @ si @ ALS2014 Serial 2478  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title (up) A Novel Approach to Geometric Fitting of Implicit Quadrics Type Conference Article
  Year 2009 Publication 8th International Conference on Advanced Concepts for Intelligent Vision Systems Abbreviated Journal  
  Volume 5807 Issue Pages 121–132  
  Keywords  
  Abstract This paper presents a novel approach for estimating the geometric distance from a given point to the corresponding implicit quadric curve/surface. The proposed estimation is based on the height of a tetrahedron, which is used as a coarse but reliable estimation of the real distance. The estimated distance is then used for finding the best set of quadric parameters, by means of the Levenberg-Marquardt algorithm, which is a common framework in other geometric fitting approaches. Comparisons of the proposed approach with previous ones are provided to show both improvements in CPU time as well as in the accuracy of the obtained results.  
  Address Bordeaux, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04696-4 Medium  
  Area Expedition Conference ACIVS  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RoS2009 Serial 1194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: