toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Antonio Lopez; Atsushi Imiya; Tomas Pajdla; Jose Manuel Alvarez edit  isbn
openurl 
  Title Closing Notes Type Book Whole
  Year (down) 2017 Publication Computer Vision in Vehicle Technology: Land, Sea & Air Abbreviated Journal  
  Volume Issue Pages 161-163  
  Keywords  
  Abstract Summary This chapter examines different vision-based commercial solutions for real-live problems related to vehicles. It is worth mentioning the recent astonishing performance of deep convolutional neural networks (DCNNs) in difficult visual tasks such as image classification, object recognition/localization/detection, and semantic segmentation. In fact,
different DCNN architectures are already being explored for low-level tasks such as optical flow and disparity computation, and higher level ones such as place recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-118-86807-2 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ LIP2017 Serial 2937  
Permanent link to this record
 

 
Author Antonio Lopez; Jiaolong Xu; Jose L. Gomez; David Vazquez; German Ros edit   pdf
openurl 
  Title From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example Type Book Chapter
  Year (down) 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal  
  Volume Issue 13 Pages 243-258  
  Keywords Domain Adaptation  
  Abstract Supervised learning tends to produce more accurate classifiers than unsupervised learning in general. This implies that training data is preferred with annotations. When addressing visual perception challenges, such as localizing certain object classes within an image, the learning of the involved classifiers turns out to be a practical bottleneck. The reason is that, at least, we have to frame object examples with bounding boxes in thousands of images. A priori, the more complex the model is regarding its number of parameters, the more annotated examples are required. This annotation task is performed by human oracles, which ends up in inaccuracies and errors in the annotations (aka ground truth) since the task is inherently very cumbersome and sometimes ambiguous. As an alternative we have pioneered the use of virtual worlds for collecting such annotations automatically and with high precision. However, since the models learned with virtual data must operate in the real world, we still need to perform domain adaptation (DA). In this chapter we revisit the DA of a deformable part-based model (DPM) as an exemplifying case of virtual- to-real-world DA. As a use case, we address the challenge of vehicle detection for driver assistance, using different publicly available virtual-world data. While doing so, we investigate questions such as: how does the domain gap behave due to virtual-vs-real data with respect to dominant object appearance per domain, as well as the role of photo-realism in the virtual world.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Gabriela Csurka  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 601.223; 600.076 Approved no  
  Call Number ADAS @ adas @ LXG2017 Serial 2872  
Permanent link to this record
 

 
Author Cristhian Aguilera edit  isbn
openurl 
  Title Local feature description in cross-spectral imagery Type Book Whole
  Year (down) 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
 
  Address October 2017  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-6-3 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Agu2017 Serial 3020  
Permanent link to this record
 

 
Author David Geronimo; David Vazquez; Arturo de la Escalera edit  url
openurl 
  Title Vision-Based Advanced Driver Assistance Systems Type Book Chapter
  Year (down) 2017 Publication Computer Vision in Vehicle Technology: Land, Sea, and Air Abbreviated Journal  
  Volume Issue Pages  
  Keywords ADAS; Autonomous Driving  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GVE2017 Serial 2881  
Permanent link to this record
 

 
Author German Ros; Laura Sellart; Gabriel Villalonga; Elias Maidanik; Francisco Molero; Marc Garcia; Adriana Cedeño; Francisco Perez; Didier Ramirez; Eduardo Escobar; Jose Luis Gomez; David Vazquez; Antonio Lopez edit  openurl
  Title Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA Type Book Chapter
  Year (down) 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal  
  Volume 12 Issue Pages 227-241  
  Keywords SYNTHIA; Virtual worlds; Autonomous Driving  
  Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (DCNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, DCNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labour which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this chapter, we propose to use a combination of a virtual world to automatically generate realistic synthetic images with pixel-level annotations, and domain adaptation to transfer the models learnt to correctly operate in real scenarios. We address the question of how useful synthetic data can be for semantic segmentation – in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations and object identifiers. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with DCNNs that show that combining SYNTHIA with simple domain adaptation techniques in the training stage significantly improves performance on semantic segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Gabriela Csurka  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RSV2017 Serial 2882  
Permanent link to this record
 

 
Author German Ros edit  isbn
openurl 
  Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type Book Whole
  Year (down) 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Gráficas Rey Place of Publication Editor Angel Sappa; Julio Guerrero; Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-1-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Ros2016 Serial 2860  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate edit  isbn
openurl 
  Title Multi-modal Pedestrian Detection Type Book Whole
  Year (down) 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Gráficas Rey Place of Publication Editor David Vazquez; Antonio Lopez;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-7-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Gon2015 Serial 2706  
Permanent link to this record
 

 
Author Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil edit   pdf
doi  isbn
openurl 
  Title Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging Type Book Chapter
  Year (down) 2015 Publication Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9534 Issue Pages 69-79  
  Keywords  
  Abstract Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.  
  Address Munich; Germany; January 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-28711-9 Medium  
  Area Expedition Conference STACOM  
  Notes ADAS; IAM; 600.075; 600.076; 600.060; 601.145 Approved no  
  Call Number Admin @ si @ KHM2015 Serial 2734  
Permanent link to this record
 

 
Author Jiaolong Xu edit  isbn
openurl 
  Title Domain Adaptation of Deformable Part-based Models Type Book Whole
  Year (down) 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract On-board pedestrian detection is crucial for Advanced Driver Assistance Systems
(ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection.
The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset.
We start by exploiting the maximum detection accuracy of the virtual-world
trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require
revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
 
  Address April 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-1-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Xu2015 Serial 2631  
Permanent link to this record
 

 
Author Alicia Fornes; Gemma Sanchez edit  doi
isbn  openurl
  Title Analysis and Recognition of Music Scores Type Book Chapter
  Year (down) 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume E Issue Pages 749-774  
  Keywords  
  Abstract The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-860-7 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ FoS2014 Serial 2484  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: