toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jose Carlos Rubio edit  openurl
  Title Many-to-Many High Order Matching. Applications to Tracking and Object Segmentation Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Feature matching is a fundamental problem in Computer Vision, having multiple applications such as tracking, image classification and retrieval, shape recognition and stereo fusion. In numerous domains, it is useful to represent the local structure of the matching features to increase the matching accuracy or to make the correspondence invariant to certain transformations (affine, homography, etc. . . ). However, encoding this knowledge requires complicating the model by establishing high-order relationships between the model elements, and therefore increasing the complexity of the optimization problem.

The importance of many-to-many matching is sometimes dismissed in the literature. Most methods are restricted to perform one-to-one matching, and are usually validated on synthetic, or non-realistic datasets. In a real challenging environment, with scale, pose and illumination variations of the object of interest, as well as the presence of occlusions, clutter, and noisy observations, many-to-many matching is necessary to achieve satisfactory results. As a consequence, finding the most likely many-to-many correspondence often involves a challenging combinatorial optimization process.

In this work, we design and demonstrate matching algorithms that compute many-to-many correspondences, applied to several challenging problems. Our goal is to make use of high-order representations to improve the expressive power of the matching, at the same time that we make feasible the process of inference or optimization of such models. We effectively use graphical models as our preferred representation because they provide an elegant probabilistic framework to tackle structured prediction problems.

We introduce a matching-based tracking algorithm which performs matching between frames of a video sequence in order to solve the difficult problem of headlight tracking at night-time. We also generalise this algorithm to solve the problem of data association applied to various tracking scenarios. We demonstrate the effectiveness of such approach in real video sequences and we show that our tracking algorithm can be used to improve the accuracy of a headlight classification system.

In the second part of this work, we move from single (point) matching to dense (region) matching and we introduce a new hierarchical image representation. We make use of such model to develop a high-order many-to-many matching between pairs of images. We show that the use of high-order models in comparison to simpler models improves not only the accuracy of the results, but also the convergence speed of the inference algorithm.

Finally, we keep exploiting the idea of region matching to design a fully unsupervised image co-segmentation algorithm that is able to perform competitively with state-of-the-art supervised methods. Our method also overcomes the typical drawbacks of some of the past works, such as avoiding the necessity of variate appearances on the image backgrounds. The region matching in this case is applied to effectively exploit inter-image information. We also extend this work to perform co-segmentation of videos, being the first time that such problem is addressed, as a way to perform video object segmentation
 
  Address  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rub2012 Serial 2206  
Permanent link to this record
 

 
Author Fernando Barrera edit  openurl
  Title Multimodal Stereo from Thermal Infrared and Visible Spectrum Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent advances in thermal infrared imaging (LWIR) has allowed its use in applications beyond of the military domain. Nowadays, this new family of sensors is included in different technical and scientific applications. They offer features that facilitate tasks, such as detection of pedestrians, hot spots, differences in temperature, among others, which can significantly improve the performance of a system where the persons are expected to play the principal role. For instance, video surveillance applications, monitoring, and pedestrian detection.
During this dissertation the next question is stated: Could a couple of sensors measuring different bands of the electromagnetic spectrum, as the visible and thermal infrared, be used to extract depth information? Although it is a complex question, we shows that a system of these characteristics is possible as well as their advantages, drawbacks, and potential opportunities.
The matching and fusion of data coming from different sensors, as the emissions registered at visible and infrared bands, represents a special challenge, because it has been showed that theses signals are weak correlated. Therefore, many traditional techniques of image processing and computer vision are not helpful, requiring adjustments for their correct performance in every modality.
In this research an experimental study that compares different cost functions and matching approaches is performed, in order to build a multimodal stereovision system. Furthermore, the common problems in infrared/visible stereo, specially in the outdoor scenes are identified. Our framework summarizes the architecture of a generic stereo algorithm, at different levels: computational, functional, and structural, which can be extended toward high-level fusion (semantic) and high-order (prior).The proposed framework is intended to explore novel multimodal stereo matching approaches, going from sparse to dense representations (both disparity and depth maps). Moreover, context information is added in form of priors and assumptions. Finally, this dissertation shows a promissory way toward the integration of multiple sensors for recovering three-dimensional information.
 
  Address  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Bar2012 Serial 2209  
Permanent link to this record
 

 
Author Diego Cheda edit  openurl
  Title Monocular Depth Cues in Computer Vision Applications Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Depth perception is a key aspect of human vision. It is a routine and essential visual task that the human do effortlessly in many daily activities. This has often been associated with stereo vision, but humans have an amazing ability to perceive depth relations even from a single image by using several monocular cues.

In the computer vision field, if image depth information were available, many tasks could be posed from a different perspective for the sake of higher performance and robustness. Nevertheless, given a single image, this possibility is usually discarded, since obtaining depth information has frequently been performed by three-dimensional reconstruction techniques, requiring two or more images of the same scene taken from different viewpoints. Recently, some proposals have shown the feasibility of computing depth information from single images. In essence, the idea is to take advantage of a priori knowledge of the acquisition conditions and the observed scene to estimate depth from monocular pictorial cues. These approaches try to precisely estimate the scene depth maps by employing computationally demanding techniques. However, to assist many computer vision algorithms, it is not really necessary computing a costly and detailed depth map of the image. Indeed, just a rough depth description can be very valuable in many problems.

In this thesis, we have demonstrated how coarse depth information can be integrated in different tasks following alternative strategies to obtain more precise and robust results. In that sense, we have proposed a simple, but reliable enough technique, whereby image scene regions are categorized into discrete depth ranges to build a coarse depth map. Based on this representation, we have explored the potential usefulness of our method in three application domains from novel viewpoints: camera rotation parameters estimation, background estimation and pedestrian candidate generation. In the first case, we have computed camera rotation mounted in a moving vehicle applying two novels methods based on distant elements in the image, where the translation component of the image flow vectors is negligible. In background estimation, we have proposed a novel method to reconstruct the background by penalizing close regions in a cost function, which integrates color, motion, and depth terms. Finally, we have benefited of geometric and depth information available on single images for pedestrian candidate generation to significantly reduce the number of generated windows to be further processed by a pedestrian classifier. In all cases, results have shown that our approaches contribute to better performances.
 
  Address  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Daniel Ponsa;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Che2012 Serial 2210  
Permanent link to this record
 

 
Author Naveen Onkarappa edit  isbn
openurl 
  Title Optical Flow in Driver Assistance Systems Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Motion perception is one of the most important attributes of the human brain. Visual motion perception consists in inferring speed and direction of elements in a scene based on visual inputs. Analogously, computer vision is assisted by motion cues in the scene. Motion detection in computer vision is useful in solving problems such as segmentation, depth from motion, structure from motion, compression, navigation and many others. These problems are common in several applications, for instance, video surveillance, robot navigation and advanced driver assistance systems (ADAS). One of the most widely used techniques for motion detection is the optical flow estimation. The work in this thesis attempts to make optical flow suitable for the requirements and conditions of driving scenarios. In this context, a novel space-variant representation called reverse log-polar representation is proposed that is shown to be better than the traditional log-polar space-variant representation for ADAS. The space-variant representations reduce the amount of data to be processed. Another major contribution in this research is related to the analysis of the influence of specific characteristics from driving scenarios on the optical flow accuracy. Characteristics such as vehicle speed and
road texture are considered in the aforementioned analysis. From this study, it is inferred that the regularization weight has to be adapted according to the required error measure and for different speeds and road textures. It is also shown that polar represented optical flow suits driving scenarios where predominant motion is translation. Due to the requirements of such a study and by the lack of needed datasets a new synthetic dataset is presented; it contains: i) sequences of different speeds and road textures in an urban scenario; ii) sequences with complex motion of an on-board camera; and iii) sequences with additional moving vehicles in the scene. The ground-truth optical flow is generated by the ray-tracing technique. Further, few applications of optical flow in ADAS are shown. Firstly, a robust RANSAC based technique to estimate horizon line is proposed. Then, an egomotion estimation is presented to compare the proposed space-variant representation with the classical one. As a final contribution, a modification in the regularization term is proposed that notably improves the results
in the ADAS applications. This adaptation is evaluated using a state of the art optical flow technique. The experiments on a public dataset (KITTI) validate the advantages of using the proposed modification.
 
  Address Bellaterra  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-1-9 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Nav2013 Serial 2447  
Permanent link to this record
 

 
Author Monica Piñol edit  isbn
openurl 
  Title Reinforcement Learning of Visual Descriptors for Object Recognition Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The human visual system is able to recognize the object in an image even if the object is partially occluded, from various points of view, in different colors, or with independence of the distance to the object. To do this, the eye obtains an image and extracts features that are sent to the brain, and then, in the brain the object is recognized. In computer vision, the object recognition branch tries to learns from the human visual system behaviour to achieve its goal. Hence, an algorithm is used to identify representative features of the scene (detection), then another algorithm is used to describe these points (descriptor) and finally the extracted information is used for classifying the object in the scene. The selection of this set of algorithms is a very complicated task and thus, a very active research field. In this thesis we are focused on the selection/learning of the best descriptor for a given image. In the state of the art there are several descriptors but we do not know how to choose the best descriptor because depends on scenes that we will use (dataset) and the algorithm chosen to do the classification. We propose a framework based on reinforcement learning and bag of features to choose the best descriptor according to the given image. The system can analyse the behaviour of different learning algorithms and descriptor sets. Furthermore the proposed framework for improving the classification/recognition ratio can be used with minor changes in other computer vision fields, such as video retrieval.  
  Address  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ricardo Toledo;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-5-7 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Piñ2014 Serial 2464  
Permanent link to this record
 

 
Author Jiaolong Xu edit  isbn
openurl 
  Title Domain Adaptation of Deformable Part-based Models Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract On-board pedestrian detection is crucial for Advanced Driver Assistance Systems
(ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection.
The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset.
We start by exploiting the maximum detection accuracy of the virtual-world
trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require
revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
 
  Address April 2015  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-1-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Xu2015 Serial 2631  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate edit  isbn
openurl 
  Title Multi-modal Pedestrian Detection Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
 
  Address November 2015  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-7-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Gon2015 Serial 2706  
Permanent link to this record
 

 
Author German Ros edit  isbn
openurl 
  Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type Book Whole
  Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
 
  Address  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa;Julio Guerrero;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-1-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Ros2016 Serial 2860  
Permanent link to this record
 

 
Author Cristhian Aguilera edit  isbn
openurl 
  Title Local feature description in cross-spectral imagery Type Book Whole
  Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
 
  Address October 2017  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-6-3 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Agu2017 Serial 3020  
Permanent link to this record
 

 
Author Cesar de Souza edit  openurl
  Title Action Recognition in Videos: Data-efficient approaches for supervised learning of human action classification models for video Type Book Whole
  Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this dissertation, we explore different ways to perform human action recognition in video clips. We focus on data efficiency, proposing new approaches that alleviate the need for laborious and time-consuming manual data annotation. In the first part of this dissertation, we start by analyzing previous state-of-the-art models, comparing their differences and similarities in order to pinpoint where their real strengths come from. Leveraging this information, we then proceed to boost the classification accuracy of shallow models to levels that rival deep neural networks. We introduce hybrid video classification architectures based on carefully designed unsupervised representations of handcrafted spatiotemporal features classified by supervised deep networks. We show in our experiments that our hybrid model combine the best of both worlds: it is data efficient (trained on 150 to 10,000 short clips) and yet improved significantly on the state of the art, including deep models trained on millions of manually labeled images and videos. In the second part of this research, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. It contains a total of 39,982 videos, with more than 1,000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We then introduce deep multi-task representation learning architectures to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, outperforming fine-tuning state-of-the-art unsupervised generative models of videos.  
  Address April 2018  
  Corporate Author Thesis (up) Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Naila Murray  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Sou2018 Serial 3127  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: