toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Angel Sappa (ed) edit  isbn
openurl 
  Title Computer Graphics and Imaging Type Book Whole
  Year 2010 Publication Computer Graphics and Imaging Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978–0–88986–836–6 Medium  
  Area Expedition Conference CGIM  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ Sap2010 Serial 1468  
Permanent link to this record
 

 
Author Ferran Diego edit  openurl
  Title Probabilistic Alignment of Video Sequences Recorded by Moving Cameras Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Video alignment consists of integrating multiple video sequences recorded independently into a single video sequence. This means to register both in time (synchronize
frames) and space (image registration) so that the two videos sequences can be fused
or compared pixel–wise. In spite of being relatively unknown, many applications today may benefit from the availability of robust and efficient video alignment methods.
For instance, video surveillance requires to integrate video sequences that are recorded
of the same scene at different times in order to detect changes. The problem of aligning videos has been addressed before, but in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, most works rely
on restrictive assumptions which reduce its difficulty such as linear time correspondence or the knowledge of the complete trajectories of corresponding scene points on the images; to some extent, these assumptions limit the practical applicability of the solutions developed until now. In this thesis, we focus on the challenging problem of aligning sequences recorded at different times from independent moving cameras following similar but not coincident trajectories. More precisely, this thesis covers four studies that advance the state-of-the-art in video alignment. First, we focus on analyzing and developing a probabilistic framework for video alignment, that is, a principled way to integrate multiple observations and prior information. In this way, two different approaches are presented to exploit the combination of several purely visual features (image–intensities, visual words and dense motion field descriptor), and
global positioning system (GPS) information. Second, we focus on reformulating the
problem into a single alignment framework since previous works on video alignment
adopt a divide–and–conquer strategy, i.e., first solve the synchronization, and then
register corresponding frames. This also generalizes the ’classic’ case of fixed geometric transform and linear time mapping. Third, we focus on exploiting directly the
time domain of the video sequences in order to avoid exhaustive cross–frame search.
This provides relevant information used for learning the temporal mapping between
pairs of video sequences. Finally, we focus on adapting these methods to the on–line
setting for road detection and vehicle geolocation. The qualitative and quantitative
results presented in this thesis on a variety of real–world pairs of video sequences show that the proposed method is: robust to varying imaging conditions, different image
content (e.g., incoming and outgoing vehicles), variations on camera velocity, and
different scenarios (indoor and outdoor) going beyond the state–of–the–art. Moreover, the on–line video alignment has been successfully applied for road detection and
vehicle geolocation achieving promising results.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Die2011 Serial 1787  
Permanent link to this record
 

 
Author Muhammad Anwer Rao edit  openurl
  Title Color for Object Detection and Action Recognition Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Recognizing object categories in real world images is a challenging problem in computer vision. The deformable part based framework is currently the most successful approach for object detection. Generally, HOG are used for image representation within the part-based framework. For action recognition, the bag-of-word framework has shown to provide promising results. Within the bag-of-words framework, local image patches are described by SIFT descriptor. Contrary to object detection and action recognition, combining color and shape has shown to provide the best performance for object and scene recognition.

In the first part of this thesis, we analyze the problem of person detection in still images. Standard person detection approaches rely on intensity based features for image representation while ignoring the color. Channel based descriptors is one of the most commonly used approaches in object recognition. This inspires us to evaluate incorporating color information using the channel based fusion approach for the task of person detection.

In the second part of the thesis, we investigate the problem of object detection in still images. Due to high dimensionality, channel based fusion increases the computational cost. Moreover, channel based fusion has been found to obtain inferior results for object category where one of the visual varies significantly. On the other hand, late fusion is known to provide improved results for a wide range of object categories. A consequence of late fusion strategy is the need of a pure color descriptor. Therefore, we propose to use Color attributes as an explicit color representation for object detection. Color attributes are compact and computationally efficient. Consequently color attributes are combined with traditional shape features providing excellent results for object detection task.

Finally, we focus on the problem of action detection and classification in still images. We investigate the potential of color for action classification and detection in still images. We also evaluate different fusion approaches for combining color and shape information for action recognition. Additionally, an analysis is performed to validate the contribution of color for action recognition. Our results clearly demonstrate that combining color and shape information significantly improve the performance of both action classification and detection in still images.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rao2013 Serial 2281  
Permanent link to this record
 

 
Author Javier Marin edit  openurl
  Title Pedestrian Detection Based on Local Experts Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract During the last decade vision-based human detection systems have started to play a key rolein multiple applications linked to driver assistance, surveillance, robot sensing and home automation.
Detecting humans is by far one of the most challenging tasks in Computer Vision.
This is mainly due to the high degree of variability in the human appearanceassociated to
the clothing, pose, shape and size. Besides, other factors such as cluttered scenarios, partial occlusions, or environmental conditions can make the detection task even harder.
Most promising methods of the state-of-the-art rely on discriminative learning paradigms which are fed with positive and negative examples. The training data is one of the most
relevant elements in order to build a robust detector as it has to cope the large variability of the target. In order to create this dataset human supervision is required. The drawback at this point is the arduous effort of annotating as well as looking for such claimed variability.
In this PhD thesis we address two recurrent problems in the literature. In the first stage,we aim to reduce the consuming task of annotating, namely, by using computer graphics.
More concretely, we develop a virtual urban scenario for later generating a pedestrian dataset.
Then, we train a detector using this dataset, and finally we assess if this detector can be successfully applied in a real scenario.
In the second stage, we focus on increasing the robustness of our pedestrian detectors
under partial occlusions. In particular, we present a novel occlusion handling approach to increase the performance of block-based holistic methods under partial occlusions. For this purpose, we make use of local experts via a RandomSubspaceMethod (RSM) to handle these cases. If the method infers a possible partial occlusion, then the RSM, based on performance statistics obtained from partially occluded data, is applied. The last objective of this thesis
is to propose a robust pedestrian detector based on an ensemble of local experts. To achieve this goal, we use the random forest paradigm, where the trees act as ensembles an their nodesare the local experts. In particular, each expert focus on performing a robust classification ofa pedestrian body patch. This approach offers computational efficiency and far less design complexity when compared to other state-of-the-artmethods, while reaching better accuracy
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Jaume Amores  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Mar2013 Serial 2280  
Permanent link to this record
 

 
Author Angel Sappa; George A. Triantafyllid edit  isbn
openurl 
  Title Computer Graphics and Imaging Type Book Whole
  Year 2012 Publication Computer Graphics and Imaging Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract  
  Address Crete, Greece  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-88986-921-9 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Sap2012 Serial 2067  
Permanent link to this record
 

 
Author Angel Sappa; Jordi Vitria edit  doi
isbn  openurl
  Title Multimodal Interaction in Image and Video Applications Type Book Whole
  Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages (down)  
  Keywords  
  Abstract Book Series Intelligent Systems Reference Library  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes ADAS; OR;MV Approved no  
  Call Number Admin @ si @ SaV2013 Serial 2199  
Permanent link to this record
 

 
Author Mohammad Rouhani edit  openurl
  Title Shape Representation and Registration using Implicit Functions Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Shape representation and registration are two important problems in computer vision and graphics. Representing the given cloud of points through an implicit function provides a higher level information describing the data. This representation can be more compact more robust to noise and outliers, hence it can be exploited in different computer vision application. In the first part of this thesis implicit shape representations, including both implicit B-spline and polynomial, are tackled. First, an approximation of a geometric distance is proposed to measure the closeness of the given cloud of points and the implicit surface. The analysis of the proposed distance shows an accurate estimation with smooth behavior. The distance by itself is used in a RANSAC based quadratic fitting method. Moreover, since the gradient information of the distance with respect to the surface parameters can be analytically computed, it is used in Levenberg-Marquadt algorithm to refine the surface parameters. In a different approach, an algebraic fitting method is used to represent an object through implicit B-splines. The outcome is a smooth flexible surface and can be represented in different levels from coarse to fine. This property has been exploited to solve the registration problem in the second part of the thesis. In the proposed registration technique the model set is replaced with an implicit representation provided in the first part; then, the point-to-point registration is converted to a point-to-model one in a higher level. This registration error can benefit from different distance estimations to speed up the registration process even without need of correspondence search. Finally, the non-rigid registration problem is tackled through a quadratic distance approximation that is based on the curvature information of the model set. This approximation is used in a free form deformation model to update its control lattice. Then it is shown how an accurate distance approximation can benefit non-rigid registration problems.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rou2012 Serial 2205  
Permanent link to this record
 

 
Author Jose Carlos Rubio edit  openurl
  Title Many-to-Many High Order Matching. Applications to Tracking and Object Segmentation Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Feature matching is a fundamental problem in Computer Vision, having multiple applications such as tracking, image classification and retrieval, shape recognition and stereo fusion. In numerous domains, it is useful to represent the local structure of the matching features to increase the matching accuracy or to make the correspondence invariant to certain transformations (affine, homography, etc. . . ). However, encoding this knowledge requires complicating the model by establishing high-order relationships between the model elements, and therefore increasing the complexity of the optimization problem.

The importance of many-to-many matching is sometimes dismissed in the literature. Most methods are restricted to perform one-to-one matching, and are usually validated on synthetic, or non-realistic datasets. In a real challenging environment, with scale, pose and illumination variations of the object of interest, as well as the presence of occlusions, clutter, and noisy observations, many-to-many matching is necessary to achieve satisfactory results. As a consequence, finding the most likely many-to-many correspondence often involves a challenging combinatorial optimization process.

In this work, we design and demonstrate matching algorithms that compute many-to-many correspondences, applied to several challenging problems. Our goal is to make use of high-order representations to improve the expressive power of the matching, at the same time that we make feasible the process of inference or optimization of such models. We effectively use graphical models as our preferred representation because they provide an elegant probabilistic framework to tackle structured prediction problems.

We introduce a matching-based tracking algorithm which performs matching between frames of a video sequence in order to solve the difficult problem of headlight tracking at night-time. We also generalise this algorithm to solve the problem of data association applied to various tracking scenarios. We demonstrate the effectiveness of such approach in real video sequences and we show that our tracking algorithm can be used to improve the accuracy of a headlight classification system.

In the second part of this work, we move from single (point) matching to dense (region) matching and we introduce a new hierarchical image representation. We make use of such model to develop a high-order many-to-many matching between pairs of images. We show that the use of high-order models in comparison to simpler models improves not only the accuracy of the results, but also the convergence speed of the inference algorithm.

Finally, we keep exploiting the idea of region matching to design a fully unsupervised image co-segmentation algorithm that is able to perform competitively with state-of-the-art supervised methods. Our method also overcomes the typical drawbacks of some of the past works, such as avoiding the necessity of variate appearances on the image backgrounds. The region matching in this case is applied to effectively exploit inter-image information. We also extend this work to perform co-segmentation of videos, being the first time that such problem is addressed, as a way to perform video object segmentation
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rub2012 Serial 2206  
Permanent link to this record
 

 
Author Fernando Barrera edit  openurl
  Title Multimodal Stereo from Thermal Infrared and Visible Spectrum Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Recent advances in thermal infrared imaging (LWIR) has allowed its use in applications beyond of the military domain. Nowadays, this new family of sensors is included in different technical and scientific applications. They offer features that facilitate tasks, such as detection of pedestrians, hot spots, differences in temperature, among others, which can significantly improve the performance of a system where the persons are expected to play the principal role. For instance, video surveillance applications, monitoring, and pedestrian detection.
During this dissertation the next question is stated: Could a couple of sensors measuring different bands of the electromagnetic spectrum, as the visible and thermal infrared, be used to extract depth information? Although it is a complex question, we shows that a system of these characteristics is possible as well as their advantages, drawbacks, and potential opportunities.
The matching and fusion of data coming from different sensors, as the emissions registered at visible and infrared bands, represents a special challenge, because it has been showed that theses signals are weak correlated. Therefore, many traditional techniques of image processing and computer vision are not helpful, requiring adjustments for their correct performance in every modality.
In this research an experimental study that compares different cost functions and matching approaches is performed, in order to build a multimodal stereovision system. Furthermore, the common problems in infrared/visible stereo, specially in the outdoor scenes are identified. Our framework summarizes the architecture of a generic stereo algorithm, at different levels: computational, functional, and structural, which can be extended toward high-level fusion (semantic) and high-order (prior).The proposed framework is intended to explore novel multimodal stereo matching approaches, going from sparse to dense representations (both disparity and depth maps). Moreover, context information is added in form of priors and assumptions. Finally, this dissertation shows a promissory way toward the integration of multiple sensors for recovering three-dimensional information.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Bar2012 Serial 2209  
Permanent link to this record
 

 
Author Diego Cheda edit  openurl
  Title Monocular Depth Cues in Computer Vision Applications Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Depth perception is a key aspect of human vision. It is a routine and essential visual task that the human do effortlessly in many daily activities. This has often been associated with stereo vision, but humans have an amazing ability to perceive depth relations even from a single image by using several monocular cues.

In the computer vision field, if image depth information were available, many tasks could be posed from a different perspective for the sake of higher performance and robustness. Nevertheless, given a single image, this possibility is usually discarded, since obtaining depth information has frequently been performed by three-dimensional reconstruction techniques, requiring two or more images of the same scene taken from different viewpoints. Recently, some proposals have shown the feasibility of computing depth information from single images. In essence, the idea is to take advantage of a priori knowledge of the acquisition conditions and the observed scene to estimate depth from monocular pictorial cues. These approaches try to precisely estimate the scene depth maps by employing computationally demanding techniques. However, to assist many computer vision algorithms, it is not really necessary computing a costly and detailed depth map of the image. Indeed, just a rough depth description can be very valuable in many problems.

In this thesis, we have demonstrated how coarse depth information can be integrated in different tasks following alternative strategies to obtain more precise and robust results. In that sense, we have proposed a simple, but reliable enough technique, whereby image scene regions are categorized into discrete depth ranges to build a coarse depth map. Based on this representation, we have explored the potential usefulness of our method in three application domains from novel viewpoints: camera rotation parameters estimation, background estimation and pedestrian candidate generation. In the first case, we have computed camera rotation mounted in a moving vehicle applying two novels methods based on distant elements in the image, where the translation component of the image flow vectors is negligible. In background estimation, we have proposed a novel method to reconstruct the background by penalizing close regions in a cost function, which integrates color, motion, and depth terms. Finally, we have benefited of geometric and depth information available on single images for pedestrian candidate generation to significantly reduce the number of generated windows to be further processed by a pedestrian classifier. In all cases, results have shown that our approaches contribute to better performances.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Daniel Ponsa;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Che2012 Serial 2210  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: