toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Akhil Gurram edit  isbn
openurl 
  Title Monocular Depth Estimation for Autonomous Driving Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D geometric information is essential for on-board perception in autonomous driving and driver assistance. Autonomous vehicles (AVs) are equipped with calibrated sensor suites. As part of these suites, we can find LiDARs, which are expensive active sensors in charge of providing the 3D geometric information. Depending on the operational conditions for the AV, calibrated stereo rigs may be also sufficient for obtaining 3D geometric information, being these rigs less expensive and easier to install than LiDARs. However, ensuring a proper maintenance and calibration of these types of sensors is not trivial. Accordingly, there is an increasing interest on performing monocular depth estimation (MDE) to obtain 3D geometric information on-board. MDE is very appealing since it allows for appearance and depth being on direct pixelwise correspondence without further calibration. Moreover, a set of single cameras with MDE capabilities would still be a cheap solution for on-board perception, relatively easy to integrate and maintain in an AV.
Best MDE models are based on Convolutional Neural Networks (CNNs) trained in a supervised manner, i.e., assuming pixelwise ground truth (GT). Accordingly, the overall goal of this PhD is to study methods for improving CNN-based MDE accuracy under different training settings. More specifically, this PhD addresses different research questions that are described below. When we started to work in this PhD, state-of-theart methods for MDE were already based on CNNs. In fact, a promising line of work consisted in using image-based semantic supervision (i.e., pixel-level class labels) while training CNNs for MDE using LiDAR-based supervision (i.e., depth). It was common practice to assume that the same raw training data are complemented by both types of supervision, i.e., with depth and semantic labels. However, in practice, it was more common to find heterogeneous datasets with either only depth supervision or only semantic supervision. Therefore, our first work was to research if we could train CNNs for MDE by leveraging depth and semantic information from heterogeneous datasets. We show that this is indeed possible, and we surpassed the state-of-the-art results on MDE at the time we did this research. To achieve our results, we proposed a particular CNN architecture and a new training protocol.
After this research, it was clear that the upper-bound setting to train CNN-based MDE models consists in using LiDAR data as supervision. However, it would be cheaper and more scalable if we would be able to train such models from monocular sequences. Obviously, this is far more challenging, but worth to research. Training MDE models using monocular sequences is possible by relying on structure-from-motion (SfM) principles to generate self-supervision. Nevertheless, problems of camouflaged objects, visibility changes, static-camera intervals, textureless areas, and scale ambiguity, diminish the usefulness of such self-supervision. To alleviate these problems, we perform MDE by virtual-world supervision and real-world SfM self-supervision. We call our proposalMonoDEVSNet. We compensate the SfM self-supervision limitations by leveraging
virtual-world images with accurate semantic and depth supervision, as well as addressing the virtual-to-real domain gap. MonoDEVSNet outperformed previous MDE CNNs trained on monocular and even stereo sequences. We have publicly released MonoDEVSNet at <https://github.com/HMRC-AEL/MonoDEVSNet>.
Finally, since MDE is performed to produce 3D information for being used in downstream tasks related to on-board perception. We also address the question of whether the standard metrics for MDE assessment are a good indicator for future MDE-based driving-related perception tasks. By using 3D object detection on point clouds as proxy of on-board perception, we conclude that, indeed, MDE evaluation metrics give rise to a ranking of methods which reflects relatively well the 3D object detection results we may expect.
 
  Address March, 2022  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez;Onay Urfalioglu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-0-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Gur2022 Serial 3712  
Permanent link to this record
 

 
Author (up) Alejandro Gonzalez Alzate edit  isbn
openurl 
  Title Multi-modal Pedestrian Detection Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-7-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Gon2015 Serial 2706  
Permanent link to this record
 

 
Author (up) Alicia Fornes; Gemma Sanchez edit  doi
isbn  openurl
  Title Analysis and Recognition of Music Scores Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume E Issue Pages 749-774  
  Keywords  
  Abstract The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-860-7 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ FoS2014 Serial 2484  
Permanent link to this record
 

 
Author (up) Angel Sappa (ed) edit  isbn
openurl 
  Title Computer Graphics and Imaging Type Book Whole
  Year 2010 Publication Computer Graphics and Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978–0–88986–836–6 Medium  
  Area Expedition Conference CGIM  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ Sap2010 Serial 1468  
Permanent link to this record
 

 
Author (up) Angel Sappa; Boris X. Vintimilla edit  openurl
  Title Edge Point Linking by Means of Global and Local Schemes Type Book Chapter
  Year 2008 Publication in Signal Processing for Image Enhancement and Multimedia Processing Abbreviated Journal  
  Volume 11 Issue Pages 115–125  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor E. Damiani  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SaV2008 Serial 938  
Permanent link to this record
 

 
Author (up) Angel Sappa; David Geronimo; Fadi Dornaika; Antonio Lopez edit   pdf
url  isbn
openurl 
  Title Stereo Vision Camera Pose Estimation for On-Board Applications Type Book Chapter
  Year 2007 Publication Scene Reconstruction, Pose Estimation and Traking Abbreviated Journal  
  Volume Issue Pages 39-50  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Rustam Stolking Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-902613-06-6 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SGD2007 Serial 797  
Permanent link to this record
 

 
Author (up) Angel Sappa; David Geronimo; Fadi Dornaika; Mohammad Rouhani; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Moving object detection from mobile platforms using stereo data registration Type Book Chapter
  Year 2012 Publication Computational Intelligence paradigms in advanced pattern classification Abbreviated Journal  
  Volume 386 Issue Pages 25-37  
  Keywords pedestrian detection  
  Abstract This chapter describes a robust approach for detecting moving objects from on-board stereo vision systems. It relies on a feature point quaternion-based registration, which avoids common problems that appear when computationally expensive iterative-based algorithms are used on dynamic environments. The proposed approach consists of three main stages. Initially, feature points are extracted and tracked through consecutive 2D frames. Then, a RANSAC based approach is used for registering two point sets, with known correspondences in the 3D space. The computed 3D rigid displacement is used to map two consecutive 3D point clouds into the same coordinate system by means of the quaternion method. Finally, moving objects correspond to those areas with large 3D registration errors. Experimental results show the viability of the proposed approach to detect moving objects like vehicles or pedestrians in different urban scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Marek R. Ogiela; Lakhmi C. Jain  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1860-949X ISBN 978-3-642-24048-5 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ SGD2012 Serial 2061  
Permanent link to this record
 

 
Author (up) Angel Sappa; Fadi Dornaika edit  url
openurl 
  Title An Edge-Based Approach to Motion Detection Type Book Chapter
  Year 2006 Publication 6th International Conference on Computational Science (ICCS´06), LNCS 3991:563–570 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Reading (United Kingdom)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SaD2006 Serial 654  
Permanent link to this record
 

 
Author (up) Angel Sappa; George A. Triantafyllid edit  isbn
openurl 
  Title Computer Graphics and Imaging Type Book Whole
  Year 2012 Publication Computer Graphics and Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Crete, Greece  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-88986-921-9 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Sap2012 Serial 2067  
Permanent link to this record
 

 
Author (up) Angel Sappa; Jordi Vitria edit  doi
isbn  openurl
  Title Multimodal Interaction in Image and Video Applications Type Book Whole
  Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
  Volume 48 Issue Pages  
  Keywords  
  Abstract Book Series Intelligent Systems Reference Library  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1868-4394 ISBN 978-3-642-35931-6 Medium  
  Area Expedition Conference  
  Notes ADAS; OR;MV Approved no  
  Call Number Admin @ si @ SaV2013 Serial 2199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: