toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Xim Cerda-Company; Xavier Otazu; Nilai Sallent; C. Alejandro Parraga edit   pdf
doi  openurl
  Title The effect of luminance differences on color assimilation Type Journal Article
  Year (down) 2018 Publication Journal of Vision Abbreviated Journal JV  
  Volume 18 Issue 11 Pages 10-10  
  Keywords  
  Abstract The color appearance of a surface depends on the color of its surroundings (inducers). When the perceived color shifts towards that of the surroundings, the effect is called “color assimilation” and when it shifts away from the surroundings it is called “color contrast.” There is also evidence that the phenomenon depends on the spatial configuration of the inducer, e.g., uniform surrounds tend to induce color contrast and striped surrounds tend to induce color assimilation. However, previous work found that striped surrounds under certain conditions do not induce color assimilation but induce color contrast (or do not induce anything at all), suggesting that luminance differences and high spatial frequencies could be key factors in color assimilation. Here we present a new psychophysical study of color assimilation where we assessed the contribution of luminance differences (between the target and its surround) present in striped stimuli. Our results show that luminance differences are key factors in color assimilation for stimuli varying along the s axis of MacLeod-Boynton color space, but not for stimuli varying along the l axis. This asymmetry suggests that koniocellular neural mechanisms responsible for color assimilation only contribute when there is a luminance difference, supporting the idea that mutual-inhibition has a major role in color induction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ COS2018 Serial 3148  
Permanent link to this record
 

 
Author Arash Akbarinia; Karl R. Gegenfurtner edit  doi
openurl 
  Title Metameric Mismatching in Natural and Artificial Reflectances Type Journal Article
  Year (down) 2017 Publication Journal of Vision Abbreviated Journal JV  
  Volume 17 Issue 10 Pages 390-390  
  Keywords Metamer; colour perception; spectral discrimination; photoreceptors  
  Abstract The human visual system and most digital cameras sample the continuous spectral power distribution through three classes of receptors. This implies that two distinct spectral reflectances can result in identical tristimulus values under one illuminant and differ under another – the problem of metamer mismatching. It is still debated how frequent this issue arises in the real world, using naturally occurring reflectance functions and common illuminants.

We gathered more than ten thousand spectral reflectance samples from various sources, covering a wide range of environments (e.g., flowers, plants, Munsell chips) and evaluated their responses under a number of natural and artificial source of lights. For each pair of reflectance functions, we estimated the perceived difference using the CIE-defined distance ΔE2000 metric in Lab color space.

The degree of metamer mismatching depended on the lower threshold value l when two samples would be considered to lead to equal sensor excitations (ΔE < l), and on the higher threshold value h when they would be considered different. For example, for l=h=1, we found that 43.129 comparisons out of a total of 6×107 pairs would be considered metameric (1 in 104). For l=1 and h=5, this number reduced to 705 metameric pairs (2 in 106). Extreme metamers, for instance l=1 and h=10, were rare (22 pairs or 6 in 108), as were instances where the two members of a metameric pair would be assigned to different color categories. Not unexpectedly, we observed variations among different reflectance databases and illuminant spectra with more frequency under artificial illuminants than natural ones.

Overall, our numbers are not very different from those obtained earlier (Foster et al, JOSA A, 2006). However, our results also show that the degree of metamerism is typically not very strong and that category switches hardly ever occur.
 
  Address Florida, USA; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Admin @ si @ AkG2017 Serial 2899  
Permanent link to this record
 

 
Author C. Alejandro Parraga edit  doi
openurl 
  Title Colours and Colour Vision: An Introductory Survey Type Journal Article
  Year (down) 2017 Publication Perception Abbreviated Journal PER  
  Volume 46 Issue 5 Pages 640-641  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; no menciona Approved no  
  Call Number Par2017 Serial 3101  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Arash Akbarinia edit   pdf
doi  openurl
  Title NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization Type Journal Article
  Year (down) 2016 Publication PLoS One Abbreviated Journal Plos  
  Volume 11 Issue 3 Pages e0149538  
  Keywords  
  Abstract The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068 Approved no  
  Call Number Admin @ si @ PaA2016a Serial 2747  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: