toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Enhancement of guided thermal image super-resolution approaches Type Journal Article
  Year 2024 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 573 Issue (up) 127197 Pages 1-17  
  Keywords  
  Abstract Guided image processing techniques are widely used to extract meaningful information from a guiding image and facilitate the enhancement of the guided one. This paper specifically addresses the challenge of guided thermal image super-resolution, where a low-resolution thermal image is enhanced using a high-resolution visible spectrum image. We propose a new strategy that enhances outcomes from current guided super-resolution methods. This is achieved by transforming the initial guiding data into a representation resembling a thermal-like image, which is more closely in sync with the intended output. Experimental results with upscale factors of 8 and 16, demonstrate the outstanding performance of our approach in guided thermal image super-resolution obtained by mapping the original guiding information to a thermal-like image representation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2024 Serial 3998  
Permanent link to this record
 

 
Author Angel Morera; Angel Sanchez; A. Belen Moreno; Angel Sappa; Jose F. Velez edit   pdf
url  openurl
  Title SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities Type Journal Article
  Year 2020 Publication Sensors Abbreviated Journal SENS  
  Volume 20 Issue (up) 16 Pages 4587  
  Keywords  
  Abstract This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) deep neural networks for the outdoor advertisement panel detection problem by handling multiple and combined variabilities in the scenes. Publicity panel detection in images offers important advantages both in the real world as well as in the virtual one. For example, applications like Google Street View can be used for Internet publicity and when detecting these ads panels in images, it could be possible to replace the publicity appearing inside the panels by another from a funding company. In our experiments, both SSD and YOLO detectors have produced acceptable results under variable sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex background and multiple panels in scenes. Due to the difficulty of finding annotated images for the considered problem, we created our own dataset for conducting the experiments. The major strength of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable when the publicity contained inside the panel is analyzed after detecting them. On the other side, YOLO produced better panel localization results detecting a higher number of True Positive (TP) panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models with different types of semantic segmentation networks and using the same evaluation metrics is also included.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 601.349; 600.122 Approved no  
  Call Number Admin @ si @ MSM2020 Serial 3452  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
doi  openurl
  Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue (up) 6 Pages 2254  
  Keywords Thermal image super-resolution; unsupervised super-resolution; thermal images; attention module; semiregistered thermal images  
  Abstract This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; Approved no  
  Call Number Admin @ si @ RSV2022b Serial 3688  
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa; Riad I. Hammoud edit   pdf
url  doi
openurl 
  Title Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Images Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue (up) 7 Pages 2059  
  Keywords RGB-NIR sensor; multispectral imaging; deep learning; CNNs  
  Abstract Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm).
This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different
scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; MSIAU; 600.086; 600.130; 600.122; 600.118 Approved no  
  Call Number Admin @ si @ SSH2018 Serial 3145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: