toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Kai Wang; Joost Van de Weijer; Luis Herranz edit   pdf
url  openurl
  Title ACAE-REMIND for online continual learning with compressed feature replay Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume (down) 150 Issue Pages 122-129  
  Keywords online continual learning; autoencoders; vector quantization  
  Abstract Online continual learning aims to learn from a non-IID stream of data from a number of different tasks, where the learner is only allowed to consider data once. Methods are typically allowed to use a limited buffer to store some of the images in the stream. Recently, it was found that feature replay, where an intermediate layer representation of the image is stored (or generated) leads to superior results than image replay, while requiring less memory. Quantized exemplars can further reduce the memory usage. However, a drawback of these methods is that they use a fixed (or very intransigent) backbone network. This significantly limits the learning of representations that can discriminate between all tasks. To address this problem, we propose an auxiliary classifier auto-encoder (ACAE) module for feature replay at intermediate layers with high compression rates. The reduced memory footprint per image allows us to save more exemplars for replay. In our experiments, we conduct task-agnostic evaluation under online continual learning setting and get state-of-the-art performance on ImageNet-Subset, CIFAR100 and CIFAR10 dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 601.379; 600.120; 600.141 Approved no  
  Call Number Admin @ si @ WWH2021 Serial 3575  
Permanent link to this record
 

 
Author Muhammad Anwer Rao; Fahad Shahbaz Khan; Joost Van de Weijer; Matthieu Molinier; Jorma Laaksonen edit   pdf
url  openurl
  Title Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type Journal Article
  Year 2018 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS J  
  Volume (down) 138 Issue Pages 74-85  
  Keywords Remote sensing; Deep learning; Scene classification; Local Binary Patterns; Texture analysis  
  Abstract Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.106; 600.120 Approved no  
  Call Number Admin @ si @ RKW2018 Serial 3158  
Permanent link to this record
 

 
Author Yaxing Wang; Luis Herranz; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Mix and match networks: multi-domain alignment for unpaired image-to-image translation Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume (down) 128 Issue Pages 2849–2872  
  Keywords  
  Abstract This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.106; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ WHW2020 Serial 3424  
Permanent link to this record
 

 
Author Maria Elena Meza de Luna; Juan Ramon Terven Salinas; Bogdan Raducanu; Joaquin Salas edit   pdf
url  openurl
  Title A Social-Aware Assistant to support individuals with visual impairments during social interaction: A systematic requirements analysis Type Journal Article
  Year 2019 Publication International Journal of Human-Computer Studies Abbreviated Journal IJHC  
  Volume (down) 122 Issue Pages 50-60  
  Keywords  
  Abstract Visual impairment affects the normal course of activities in everyday life including mobility, education, employment, and social interaction. Most of the existing technical solutions devoted to empowering the visually impaired people are in the areas of navigation (obstacle avoidance), access to printed information and object recognition. Less effort has been dedicated so far in developing solutions to support social interactions. In this paper, we introduce a Social-Aware Assistant (SAA) that provides visually impaired people with cues to enhance their face-to-face conversations. The system consists of a perceptive component (represented by smartglasses with an embedded video camera) and a feedback component (represented by a haptic belt). When the vision system detects a head nodding, the belt vibrates, thus suggesting the user to replicate (mirror) the gesture. In our experiments, sighted persons interacted with blind people wearing the SAA. We instructed the former to mirror the noddings according to the vibratory signal, while the latter interacted naturally. After the face-to-face conversation, the participants had an interview to express their experience regarding the use of this new technological assistant. With the data collected during the experiment, we have assessed quantitatively and qualitatively the device usefulness and user satisfaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ MTR2019 Serial 3142  
Permanent link to this record
 

 
Author Carola Figueroa Flores; Abel Gonzalez-Garcia; Joost Van de Weijer; Bogdan Raducanu edit   pdf
url  openurl
  Title Saliency for fine-grained object recognition in domains with scarce training data Type Journal Article
  Year 2019 Publication Pattern Recognition Abbreviated Journal PR  
  Volume (down) 94 Issue Pages 62-73  
  Keywords  
  Abstract This paper investigates the role of saliency to improve the classification accuracy of a Convolutional Neural Network (CNN) for the case when scarce training data is available. Our approach consists in adding a saliency branch to an existing CNN architecture which is used to modulate the standard bottom-up visual features from the original image input, acting as an attentional mechanism that guides the feature extraction process. The main aim of the proposed approach is to enable the effective training of a fine-grained recognition model with limited training samples and to improve the performance on the task, thereby alleviating the need to annotate a large dataset. The vast majority of saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline. Our proposed pipeline allows to evaluate saliency methods for the high-level task of object recognition. We perform extensive experiments on various fine-grained datasets (Flowers, Birds, Cars, and Dogs) under different conditions and show that saliency can considerably improve the network’s performance, especially for the case of scarce training data. Furthermore, our experiments show that saliency methods that obtain improved saliency maps (as measured by traditional saliency benchmarks) also translate to saliency methods that yield improved performance gains when applied in an object recognition pipeline.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; OR; 600.109; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ FGW2019 Serial 3264  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: