toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Guillermo Torres; Debora Gil; Antoni Rosell; S. Mena; Carles Sanchez edit  openurl
  Title Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules – Intermediate Results of the RadioLung Project Type Journal Article
  Year (down) 2023 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCARS  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ TGM2023 Serial 3830  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year (down) 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit   pdf
doi  openurl
  Title BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Journal Article
  Year (down) 2023 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB  
  Volume 228 Issue Pages 107241  
  Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation  
  Abstract Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number Admin @ si @ BSC2023 Serial 3702  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Ignasi Garcia Olive; Maite Salcedo Pujantell; Jordi Deportos; Carles Sanchez; Guillermo Torres; Gloria Moragas; Antoni Rosell edit  url
doi  openurl
  Title Correction: A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year (down) 2023 Publication European Journal of Nuclear Medicine and Molecular Imaging Abbreviated Journal EJNMMI PHYSICS  
  Volume 10 Issue 1 Pages 13  
  Keywords early diagnosis; Lung Cancer; nodule diagnosis; nodule diagnosis; Radiomics; Screening  
  Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number BGG2023 Serial 3858  
Permanent link to this record
 

 
Author Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil edit  url
openurl 
  Title EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results Type Journal Article
  Year (down) 2022 Publication Journal of Thoracic Oncology Abbreviated Journal JTO  
  Volume 17 Issue 9 Pages S182  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ RBG2022b Serial 3834  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: